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CONSTRUCTIBLE MOTIVIC FUNCTIONS AND

MOTIVIC INTEGRATION

by

Raf Cluckers & François Loeser

1. Introduction

1.1. — In this paper, intented to be the first in a series, we lay new general foun-
dations for motivic integration and give answers to some important issues in the
subject. Since its creation by Maxim Kontsevich [20], motivic integration devel-
opped quite fast and has spread out in many directions. In a nutshell, in motivic
integration, numbers are replaced by geometric objects, like virtual varieties, or
motives. But, classicaly, not only numbers are defined using integrals, but also
interesting classes of functions. The previous constructions of motivic integration
were all quite geometric, and it was quite unclear how they could be generalized
to handle integrals depending on parameters. The new approach we present here,
based on cell decomposition, allows us to develop a very general theory of motivic
integration taking in account parameters. More precisely, we define a natural class
of functions - constructible motivic functions - which is stable under integration.

The basic idea underlying our approach is to construct more generally push-
forward morphisms f! which are functorial - they satisfy (f ◦ g)! = f! ◦ g! - so that
performing motivic integration corresponds to taking the push-forward to the point.
This strategy has many technical advantages. In a nutshell it allows to reduce the
construction of f! to the case of closed immersions and projections, and in the later
case we can perform induction on the relative dimension, the basic case being that of
relative dimension 1, for which we can make use of the cell decomposition Theorem
of Denef-Pas [24].

1.2. — Our main construction being inspired by analogy with integration along
the Euler characteristic for constructible functions over the reals, let us first present
a brief overview of this theory, for which we refer to [22], [26], and [29] for more
details. We shall put some emphasis on formulation in terms of Grothendieck rings.
Let us denote by SAR the category of real semialgebraic sets, that is, objects of SAR
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are semialgebraic sets and morphisms are semialgebraic maps. Since every real semi-
algebraic set admits a semialgebraic triangulation, the Euler characteristic of real
semialgebraic sets may be defined as the unique Z-valued additive invariant on the
category of real semialgebraic sets which takes value one on closed simplexes. More
precisely, let us define K0(SAR), the Grothendieck ring of real semialgebraic sets, as
the quotient of the free abelian group on symbols [X], for X real semialgebraic, by
the relations [X] = [X ′] ifX andX ′ are isomorphic, and [X∪Y ] = [X]+[Y ]\[X∩Y ],
the product being induced by the cartesian product of semialgebraic sets. Then, ex-
istence of semialgebraic triangulations easily implies the following statement:

1.2.1. Proposition. — The Euler characteristic morphism [X] 7→ Eu(X) induces
a ring isomorphism

K0(SAR) ≃ Z.

A constructible function on a semialgebraic set X is a function ϕ : X → Z that
can be written as a finite sum ϕ =

∑
i∈I mi1Xi

with mi in Z and Xi semialgebraic
subsets of X. The set Cons(X) of constructible functions on X is a ring. If f : X →
Y is a morphism of semialgebraic sets, we have a natural pullback morphism f ∗ :
Cons(Y ) → Cons(X) given by ϕ 7→ ϕ ◦ f . Now let us explain how the contruction
of a push-forward morphism f∗ : Cons(X) → Cons(Y ) is related to integration with
respect to Euler characteristic.

Let ϕ =
∑

i∈I mi1Xi
be in Cons(X). One sets

∫

X

ϕ :=
∑

i∈I

miEu(Xi).

It is quite easy to check that this quantity depends only on ϕ. Now if f : X → Y is
a morphism, one checks that defining f∗ by

f∗(ϕ)(y) =

∫

f−1(y)

ϕ,

indeed yields a morphism f∗ : Cons(X) → Cons(Y ), and that furthermore (f ◦
g)∗ = f∗ ◦ g∗. For our purposes it will be more enlighting to express the preceding
construction in terms of relative Grothendieck rings.

For X a semialgebraic set, let us consider the category SAX of semialgebraic sets
over X. Hence objects of SAX are morphisms Y → X in SAR and a morphism
(h : S → X) → (h′ : S ′ → X) in SAX is a morphism g : S → S ′ such that h′ ◦g = h.
Out of SAX , one constructs a Grothendieck ring K0(SAX) similarly as before, and
we have the following statement, which should be folklore, though we could not find
it the literature.

1.2.2. Proposition. — Let X be a semialgebraic set.

(1) The mapping [h : S → X] 7→ h∗(1S) induces an isomorphism

K0(SAX) ≃ Cons(X).
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(2) Let f : X → Y be a morphism in SAR. Under the above isomorphism
f∗ : Cons(X) → Cons(Y ) corresponds to the morphism K0(SAX) → K0(SAY )
induced by composition with f .

1.3. — Let us now explain more about our framework. Fix a field k of characteristic
0. We want to integrate (functions defined on) subobjects of k((t))m. For technical
reasons it is wiser to consider more generally integration on subobjects of k((t))m ×
kn ×Zr. This will allow considering parameters lying in the valued field, the residue
field, and the value group. In fact, we shall restrict ourselves to considering a
certain class of reasonably tame objects, that of definable subsets in a language LDP.
Typically these objects are defined by formulas involving usual symbols 0, 1,+,−,×
for the k((t)) and k variables, and 0, 1,+,−,≤ for the Z-variables, and also symbols
ord for the valuation and ac for the first non trivial coefficient of elements of k((t)),
and the usual logical symbols (see 2.1 for more details). Furthermore we shall not
only consider the set of points in k((t))m × kn × Zr satisfying a given formula ϕ,
but also look to the whole family of subsets of K((t))m ×Kn × Zr, for K running
over all fields containing k, of points that satisfy ϕ. This is what we call definable
subassignments. Definable subassignments form a category and are our basic objects
of study.

Let us fix such a definable subassignment S. Basically, constructible motivic
functions on S are built from

- classes [Z] in a suitable Grothendieck ring of definable subassignment Z of
S × Ad

k for some d ;
- symbols Lα, where L stands for the class of the relative affine line over S and

α is some definable Z-valued function on S;
- symbols α for α a definable Z-valued function on S.
Constructible motivic functions on S form a ring C(S). Any definable subassign-

ment C of S has a characteristic function 1C in C(S).

1.4. — We explain now on an example how one can recover the motivic volume
by considering the push-forward of constructible functions. We shall consider the
points of the affine elliptic curve x2 = y(y − 1)(y − 2) with nonnegative valuation,
namely the definable subassignment C of A2

k((t)) defined by the conditions

x2 = y(y − 1)(y − 2), ord(x) ≥ 0 and ord(y) ≥ 0.

Since the affine elliptic curve E defined by ξ2 = η(η− 1)(η− 2) in A2
k is smooth, we

now that the motivic volume µ(C) should be equal to [E]
L

, cf. [11]. Let us consider
the projection p : A2

k((t)) → A1
k((t)) given by (x, y) 7→ y. In our formalism p!([1C ]) is

equal to a sum A+B0 + B1 +B2 with

A = [ξ2 = ac(y)(ac(y) − 1)(ac(y) − 2)][1C(A)]

B0 = [ξ2 = 2ac(y)][1C0 ]L
ord(y)/2

B1 = [ξ2 = −2ac(y − 1)][1C1 ]L
ord(y−1)/2
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and

B2 = [ξ2 = 2ac(y − 2)][1C2 ]L
ord(y−2)/2,

with C(A) = {y | ord(y) = ord(y − 1) = ord(y − 2) = 0} and Ci = {y | ord(y −
i) > 0 and ord(y − i) ≡ 0 mod 2}. So p!([1C ]) looks already like a quite general
constructible motivic function.

Let us show how one can recover the motivic volume of µ(C) by computing the
integral of p!([1C ]) on A1

k((t)). Let πi denote the projection of Ai
k((t)) on the point.

One computes π1!(A) = [E]−3
L

, while summing up the corresponding geometric series

leads to that π1!(B0) = π1!(B1) = π1!(B2) = L−1, so that finally π1!(p!([1C ])) = [E]
L

.
Hence the calculation fits with the requirements π1! ◦ p! = (π1 ◦ p)! = π2! and
π2!([1C ]) = µ(C).

1.5. — Such a computation is maybe a bit surprising at first sight, since one could
think that is not possible to recover the motive of an elliptic curve by projecting
on to the line and computing the volume of the fibers, which consist of 0, 1 or 2
points. The point is that our approach is not so naive and keeps track of the elliptic
curve which remains encoded at the residue field level. Our main construction can
be considered as a vast amplification of that example and one may understand
that the main difficulty in the construction is proving that our construction of f! is
independent of the way we may decompose f into a composition of morphisms.

In fact, we do not integrate functions in C(S), but rather their classes in a graded
object C(S) = ⊕dC

d(S). The reason for that is that we have to take in account
dimension considerations. For instance we could factor the identity morphism from
the point to itself as the composition of an embedding in the line with the projection
of the line on the point. Then some problem arises: certainly the point should be
of measure 1 in itself, but as a subset of the line it should be of measure 0! To
circumvent this difficulty, we filter C(S) by “k((t))-dimension of support”. Typically,
if ϕ has “k((t))-dimension of support” equal to d, we denote by [ϕ] its class in the
graded piece Cd(S)(1). We call elements of C(S) constructible motivic Functions.
One further difficulty is that arbitrary elements of C(S) may not be integrable, that
is, the corresponding integral could diverge. So we need to define at the same time
the integral (or the push-forward) and the integrability condition. Also, as in the
usual construction of Lebesgue integral, it is technically very useful to consider first
only “positive constructible functions” on S. They form a semiring C+(S) and we
may consider the corresponding graded object C+(S). An important difference with
the classical case, is that in general the canonical morphisms C+(S) → C(S) and
C+(S) → C(S) are not injective.

The main achievement of the present paper is the following: we establish existence
and unicity of a) a subgroup IS′C+(S) of C+(S) consisting of S ′-integrable positive
Functions on S, b) a push-forward morphism f! : IS′C+(S) → C+(S ′), under a

(1)That notation was already used in 1.4 without explanation.
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certain system of natural axioms, for every morphism f : S → S ′ of definable
subassignments.

1.6. — Once the main result is proven, we can grasp its rewards. Firstly, it may be
directly generalized to the relative setting of integrals with parameters. In particular
we get that motivic integrals parametrized by a definable subassignment S take their
values in C+(S) or in C(S). Also, our use of the quite abstract definable subassign-
ments allows us to work at level of generality that encompasses both “classical”
motivic integration as developed in [11] and the “arithmetical” motivic integration
of [12]. More precisely, we show that the present theory may be specialized both
to “classical” motivic integration and “arithmetical” motivic integration, but with
the bonus that no more completion process is needed. Indeed, there is a canonical
forgetful morphism C(point) → K0(Vark)rat, with K0(Vark)rat the localization of the
Grothendieck ring of varieties over k with respect to L and 1 − L−n, n ≥ 1, that
sends the motivic volume of a definable object as defined here, to a representative of
the “classical” motivic volume in K0(Vark)rat. So in the definable setting, “classical”
motivic volume takes values in K0(Vark)rat (and not in any completion of it). Such
a result lies in the fact that in our machinery, the only infinite process that occurs
is summation of geometric series in powers of L−1. A similar statement holds in the
arithmetic case.

Another important feature is that no use at all is made of desingularization re-
sults. On the other side we rely very strongly on the cell decomposition Theorem of
Denef-Pas. This makes in some sense things much worse in positive characteristic,
since then desingularization is a reasonable conjecture while there is even no sensible
guess of what cell decomposition could be in that case!

1.7. — Let us now describe briefly the content of the paper. Our basic objects
of study are the various categories of definable subassignments in the Denef-Pas
language that we review in section 2. An essential feature of these definable sub-
assignments is that they admit a good dimension theory with respect to the valued
field variables that we call K-dimension. This is established in section 3. As a first
step in constructing motivic integrals, we develop in section 4 a general machinery
for summing over the integers. This is done in the framework of functions defin-
able in the Presburger language. We prove a general rationality statement Theorem
4.4.1 which we formulate in terms of a Mellin transformation. This allows to express
punctual summability of a series in terms of polar loci of its Mellin transform and
thus to define the sum of the series by evaluation of the Mellin transform at 1. This
construction is the main device that allows us to avoid any completion process in our
integration theory, in contrast with previous approaches. In the following section 5,
we define constructible motivic functions and we extend the constructions and the
results of the previous section to this framework. After the short section 6 which is
devoted to the construction of motivic constructible Functions (as opposed to func-
tions) and their relative variants, section 7 is devoted to cell decomposition, which
is, as we already stressed, a basic tool in our approach. We need a definition of cells
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slightly more flexible than the one of Denef-Pas for which we give the appropriate
cell decomposition Theorem à la Denef-Pas, and we also introduce bicells. We prove
a fundamental structure result, Theorem 7.5.3, for definable functions with values
in the valued field which may show interesting for its own right. Section 8 is devoted
to introducing basic notions of differential calculus, like differential forms, volume
forms and order of jacobian in the definable setting. In section 9, which appears to
be technically quite involved, we construct motivic integrals in relative dimension
1 (with respect to the valued field variable). In particular we prove a fundamental
change of variable formula in relative dimension 1, whose proof uses Theorem 7.5.3,
and which will be of essential use in the rest of the paper.

We are then able to state our main result, Theorem 10.1.1, in section 10, and
section 11 is devoted to its proof. The idea of the proof is quite simple. By a
graph construction one reduces to the case of definable injections and projections.
Injections being quite easy to handle, let us consider projections. We already now
how to integrate with respect to Z-variables and also with respect to one valued
field variable, integration with respect to residue field variables being essentially
tautological. So to be able to deal with the general case, we need to prove various
statements of Fubini type, that will allow us to interchange the order in which we
perform integration with respect to various variables. The most difficult case is
that of two valued field variables, that requires careful analysis of what happens on
various types of bicells. Let us note that van den Dries encounters a similar difficulty
in his construction of Euler characteristics in the o-minimal framework [17]. Once
the main Theorem is proved, we can derive the main properties and applications. In
section 12, we prove a general change of variable formula and also the fundamental
fact that a positive Function that is bounded above by an integrable Function is also
integrable. We then develop the integration formalism for Functions in C(X) - that
is with no positivity assumption - in section 13. In section 14 we consider integrals
with parameters and extend all previous resuts to this framework. As a side result,
we prove the very general rationality Theorem 14.5.1.

The last part of the paper is devoted to generalization to the global setting and to
comparison results. In section 15, we consider integration on definable subsassign-
ments of varieties. This is done by replacing functions by volume forms, as one can
expect. More precisely, if f is a morphism between global definable subassignments
S and S ′, we construct a morphism f top

! sending f -integrable volume forms on S to
volume forms on S ′, which corresponds to integrating Functions in top dimension in
the affine case. This provides the right framework for a general Fubini Theorem for
fiber integrals (Theorem 15.3.1). We then show in section 16 how our construction
relates with the previous constructions of motivic integration. In the paper [7] we
explain how it specializes to p-adic integration and we also give some applications
to Ax-Kochen-Eršov Theorems for integrals depending on parameters. The main
results of the present paper have been announced in [5]and [6].
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I

PRELIMINARY CONSTRUCTIONS

2. Definable subassignments

In this section, we extend the notion of definable subassignments, introduced in
[12], to the context of LDP-definable sets, with LDP a language of Denef-Pas.

2.1. Languages of Denef-Pas. — Let K be a valued field, with valuation map
ord : K× → Γ for some additive ordered group Γ, R its valuation ring, k the residue
field. We denote by x 7→ x̄ the projection R → k modulo the maximal ideal M of R.
An angular component map (moduloM) onK is a multiplicative map ac : K× → k×

extended by putting ac(0) = 0 and satisfying ac(x) = x̄ for all x with ord(x) = 0.
If K = k((t)) for some field k, there exists a natural valuation map K → Z and a

natural angular component map sending x =
∑

i≥ℓ ait
i ∈ K× with ai ∈ k and aℓ 6= 0

to ℓ and aℓ, respectively.
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Fix an arbitrary expansion LOrd of the language of ordered groups (+,−, 0,≤)
and an arbitrary expansion LRes of the language of rings LRings = (+,−, ·, 0, 1). A
language LDP of Denef-Pas is a three-sorted language of the form

(LVal,LRes,LOrd, ord, ac),

with as sorts:

(i) a Val-sort for the valued field-sort,
(ii) a Res-sort for the residue field-sort, and
(iii) an Ord-sort for the value group-sort,

where the language LVal for the Val-sort is the language of rings LRings, and the
languages LRes and LOrd are used for the Res-sort and the Ord-sort, respectively.
We only consider structures for LDP consisting of tuples (K, k,Γ) where K is a
valued field with value group Γ, residue field k, a valuation map ord, and an angular
component map ac, together with an interpretation of LRes and LOrd in k and Γ,
respectively.

When LRes is LRings and LOrd is the Presburger language

LPR = {+,−, 0, 1,≤} ∪ {≡n | n ∈ N, n > 1},

with ≡n the equivalence relation modulo n and 1 a constant symbol (with the natural
interpretation if Γ = Z), we write LDP,P for LDP.

As is standard for first order languages, LDP-formulas are (meaningfully) built
up from the LDP-symbols together with variables, the logical connectives ∧ (and),
∨ (or), ¬ (not), the quantifiers ∃, ∀, the equality symbol =, and parameters.(2) Also
in a standard way, any LDP-formula yields a subset of a Cartesian product of K, k,
and Γ for any LDP-structure (K, k,Γ), where this Cartesian product is up to order
determined by the free variables (these are the variables not bound by quantifiers)
in the formula.

Let us now recall the statement of the Denef-Pas Theorem on elimination of
valued field quantifiers. Fix a language LDP of Denef-Pas. Denote by Hac,0 the
LDP-theory of the above described structures which valued field is Henselian and
which residue field is of characteristic zero.

2.1.1. Theorem (Denef-Pas). — The theory Hac,0 admits elimination of quan-
tifiers in the valued field sort. More precisely, every LDP-formula φ(x, ξ, α), with x
variables in the Val-sort, ξ variables in the Res-sort and α variables in the Ord-sort,
is Hac,0-equivalent to a finite disjunction of formulas of the form

ψ(acf1(x), . . . , acfk(x), ξ) ∧ θ(ordf1(x), . . . , ordfk(x), α),

with ψ a LRes-formula, θ a LOrd-formula and f1, . . . , fk polynomials in Z[X].

(2)For first order languages, function symbols need to have a Cartesian product of sorts as domain,
while the symbol ord has the valued field-sort minus the point zero as domain. Our use of the
symbol ord with argument x in a LDP-formula is in fact an abbreviation for a function with domain
the Val-sort which extends the valuation (the reader may choose the value of 0), conjoined with
the condition x 6= 0.
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Theorem 2.1.1 is not exactly expressed that way in [24]. The present statement
can be found in [16] (3.5) and (3.7).

2.2. General subassignments. — Let F : C → Sets be a functor from a category
C to the category of sets. We shall call the data for each object C of C of a subset
h(C) of F (C) a subassignment of F . The point in this definition is that h is not
assumed to be a subfunctor of F .

For h and h′ two subassignments of F , we shall denote by h ∩ h′ and h ∪ h′, the
subassignments C 7→ h(C) ∩ h′(C) and C 7→ h(C) ∪ h′(C), respectively. Similarly,
we denote by h′ \ h the subassignment C 7→ h′(C) \ h(C).

We also write h′ ⊂ h if h′(C) ⊂ h(C) for every object C of C. In the case that
h′ ⊂ h are subassignments of F we will also call h′ a subassignment of h (although
h itself need not to be a functor).

There is a trivial notion of a morphism between subassignments: for h1 and h2

subassignments of some functors F1, F2 : C → Sets, a morphism f : h1 → h2 is
just the datum, for every C ∈ C, of a function f(C) (or f for short) from h1(C) to
h2(C). If h′i is a subassignment of hi, i = 1, 2, one defines the subassignments f(h′1)
and f−1(h′2) in the obvious way. We can also define the Cartesian product h1 × h2

of h1 and h2 by (h1 × h2)(C) := h1(C) × h2(C) for C ∈ C; it is a subassignment of
the functor F1 ×F2 which sends C ∈ C to F1(C)×F2(C). Similarly, one can pursue
other operations of set theory, for example:

The graph of a morphism f : h1 → h2 with hi a subassignment of Fi is the
subassignment of F1 × F2 sending C ∈ C to

{(x, y) ∈ h1(C) × h2(C) | f(x) = y}.

If hi for i = 1, 2, 3 are subassignments of Fi : C → Sets and fj : hj → h3

morphisms for j = 1, 2, the fiber product h1 ⊗h3 h2 is the subassignment of F1 × F2

sending C ∈ C to

{(x, y) ∈ h1(C) × h2(C) | f1(x) = f2(y)}.

2.3. Definable subassignments. — Let k be a field. We denote by Fieldk the
category of all fields containing k.

We consider W := Am
k((t)) × An

k × Zr, m,n, r ≥ 0. It defines a functor hW from

the category Fieldk to the category of sets by setting hW (K) = K((t))m ×Kn ×Zr.
We shall write h[m,n, r] for hW . However, we will usually write hSpec k instead of
h[0, 0, 0]; it is the functor which asssigns to each K in Fieldk the one point set.

Fix a language LDP of Denef-Pas(3). Any formula ϕ in LDP with coefficients in
k((t)) in the valued field sort and coefficients in k in the residue field sort, with m
free variables in the valued field sort, n in the residue field sort and r in the value

(3)Except in Theorem 2.1.1, we always assume without writing that (K((t)), K,Z) is a structure
for LDP for all fields K under consideration (usually K runs over a category of the form Fieldk).
Starting from section 5 the language will be LDP,P, which satisfies this condition.
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group sort, defines a subassignment hϕ of h[m,n, r] by assigning to K in Fieldk the
subset of h[m,n, r](K) defined by ϕ, namely,

hϕ(K) = {x ∈ h[m,n, r](K) | (K,K((t)),Z) |= ϕ(x)}.

We call hϕ a definable subassignment of h[m,n, r].
If the coefficients of the formula ϕ in the valued field sort all lie in some subring

S of k((t)) and the coefficients in the residue field sort are in k, we call hϕ a LDP(S)-
definable subassignment and we write LDP(S) to denote the language LDP with such
coefficients.

We denote by ∅ the empty definable subassignment which sends each K in Fieldk

to the empty set ∅.
More generally, if X is a variety, that is, a separated and reduced scheme of finite

type, over k((t)) and X is a variety over k, we consider W ′ := X × X × Zr and
the functor hW ′ from Fieldk to the category of sets which to K assigns hW ′(K) =
X (K((t))) × X(K) × Zr. We will define definable subassignments of hW ′ by a
glueing procedure. Assume first X is affine and embedded as a closed subscheme in
An

k and similarly for X in Am
k((t)). We shall say a subassignment of hW ′ is a definable

subassignment if it is a definable subassignment of h[m,n, r]. Clearly, this definition
is independent of the choice of the embedding of X and X in affine spaces.

In general, a subassignment h of hW ′ will be a definable subassignment if there
exist finite covers (Xi)i∈I of X and (Xj)j∈J of X by affine open subschemes (defined
over k and k((t)) respectively; such covers always exist) and definable subassign-
ments hij of hXi×Xj×Zr , for i ∈ I and j ∈ J , such that h = ∪i,jhij. If X as well as
its cover (Xj)j is defined over some subring S of k((t)), and if the hij are LDP(S)-
definable subassignments, we call h a LDP(S)-definable subassignment.

For i = 1, 2, let hi be a definable subassignment of hWi
with Wi = Xi×Xi×Zri , Xi

a variety over k((t)), and Xi a variety over k. A definable morphism f : h1 → h2 is
a morphism h1 → h2 (as in section 2.2) whose graph is a definable subassignment of
hW1×W2 . If moreover h1, h2, and the graph of f are LDP(S)-definable subassignments
for some subring S of k((t)), we call f a LDP(S)-definable morphism.

The set-theoretical operations defined above for general subassignments also work
at the level of definable subassignments, for example, fiber products of definable
subassignments are again definable subassignments.

2.4. — Using our fixed language LDP of Denef-Pas, we define the category of
(affine) definable subassignments Defk (also written Defk(LDP)), as the category
whose objects are pairs (Z, h[m,n, r]) with Z a definable subassignment of h[m,n, r],
a morphism between (Z, h[m,n, r]) and (Z ′, h[m′, n′, r′]) being a definable morphism
Z → Z ′, that is, a morphism of subassignments whose graph is a definable sub-
assignment of h[m+m′, n+n′, r+ r′]. Similarly one defines the category of (global)
definable subassignments GDefk (also written GDefk(LDP)), as the category whose
objects are pairs (Z, hW ) with Z a definable subassignment of hW , where W is of the
form X × X × Zr with X a k((t))-variety and X a k-variety, a morphism between
(Z, hW ) and (Z ′, hW ′) being a definable morphism Z → Z ′.
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More generally if Z is in Defk, resp. GDefk, one considers the category DefZ ,
resp. GDefZ , of objects over Z, that is, objects are definable morphisms Y → Z in
Defk, resp. GDefk, and a morphism between Y → Z and Y ′ → Z is just a morphism
Y → Y ′ making the obvious diagram to commute.

For every morphism f : Z → Z ′ in Defk, composition with f defines a functor
f! : DefZ → DefZ′. Also, fiber product defines a functor f ∗ : DefZ′ → DefZ . We use
similar notations when f : Z → Z ′ is a morphism in GDefk.

Let Y and Y ′ be in Defk (resp. GDefk). We write Y × Y ′ for Y ⊗hSpec k
Y ′ which

belongs to Defk (resp. GDefk). We shall also write Y [m,n, r] for Y × h[m,n, r].
Note that hSpec k and ∅ are respectivly the final and the initial objects of Defk

and GDefk.
For a subring S of k((t)), we define Defk(LDP(S)) as the subcategory of Defk

whose objects are pairs (Z, h[m,n, r]) with Z a LDP(S)-definable subassignment
of h[m,n, r], and whose morphisms are LDP(S)-definable morphisms. Similarly we
define GDefk(LDP(S)), DefZ(LDP(S)), and GDefZ(LDP(S)) for some Z is in Defk

or in GDefk, respectively.

2.5. Extension of scalars. — For K in Fieldk there is a canonical functor
GDefk → GDefK of extension of scalars which sends Z = (Z0, hW ) in GDefk, with
W = X ×X×Zr, X a k((t))-variety, and X a k-variety, to Z⊗hSpec K := (Z ′

0, hW ′),
with W ′ = X ′ ×X ′ × Zr, X ′ = X ⊗ SpecK((t)), and X ′ = X ⊗ SpecK, and where
Z0 is the definable subassignment of h′W which is given by the same LDP-formulas
than Z0 on affine covers of X ′ and X ′ which are defined over k((t)) and k, respec-
tively. Using graphs, one defines similarly the image of morphisms in GDefk under
extension of scalars, getting a functor of extension of scalars Defk → DefK .

Note that once the scalars are extended from k to K, a lot of new definable
subassignments occur because one allows coefficients in K((t)) in the valued field
sort and coefficients in K in the residue field sort in the LDP-formulas.

2.6. Points on definable subassignments. — For Z in GDefk, a point x on Z
is by definition a tuple x = (x0, K) such that x0 is in Z(K) and K is in Fieldk. For
a point x = (x0, K) on Z we write k(x) = K and we call k(x) the residue field of x.

Let f : X → Y be a morphism in Defk, with X = (X0, h[m,n, r]) and Y =
(Y0, h[m

′, n′, r′]). Let ϕ(x, y) be the formula which describes the graph of f , where
x runs over h[m,n, r] and y runs over h[m′, n′, r′]. For every point y = (y0, k(y0))
of Y , we may consider its fibre Xy, which is the object in Defk(y) defined by the

formula ϕ(x, y0)
(4). Taking fibers at y gives rise to a functor i∗y : DefY → Defk(y).

Fibers of a morphism f : X → Y in GDefk are defined similarly via affine covers
and we shall use similar notations as for morphisms in Defk.

2.7. T -subassignments. — Let T be a theory given by sentences in LDP with
coefficients in k and k((t)) (a sentence is a formula without any free variables). We

(4)Note that the formula ϕ(x, y0) has coefficients in k(y) and k(y)((t)), which is allowed in Defk(y).
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denote by Fieldk(T ) the category of fields F over k such that (F ((t)), F,Z) is a
model of T and whose morphisms are field homomorphisms. Given a k((t))-variety
X , a k-variety X, and W = X ×X × Zr, we can restrict the functor hW as defined
above to Fieldk(T ) and we also write hW to denote this functor. We can speak of
definable T -subassignments of hW in exactly the same way as above. A definable
T -morphism between T -subassignments Z and Z ′ is also defined accordingly.

We define the category GDefk(LDP, T ) of definable T -subassignments as the cate-
gory whose objects are pairs (Z, hW ) with Z a definable subassignment of hW , where
W is of the form W = X ×X×Zr, and T -morphisms being definable T -morphisms.
One defines similarly Defk(LDP, T ).

3. Dimension theory for definable subassignments

3.1. — The Zariski closure of a definable subassignment Z of hX with X a variety
over k((t)) is the intersection W of all subvarieties Y of X such that Z ⊂ hY . We
define the dimension of Z as KdimZ := dimW if W is nonempty and as −∞ if W
is empty. More generally, if Z is a subassignment of hW with W = X ×X × Zr, X
a variety over k((t)), and X a variety over k, we define KdimZ as the dimension of
the image of Z under the projection hW → hX . We shall establish basic properties
of this dimension using work by van den Dries [15], by Denef and Pas [24], and by
Denef and van den Dries [10].

3.2. — Since K((t)) is a complete field for any field K, we can use the theory
of K((t))-analytic manifolds as developed for instance in [1]. By a K((t))-analytic
manifold we mean a separated topological space equipped with an analytic atlas of
charts into K((t))n for some fixed n; this n is called the dimension of such a manifold.
Note that we do not assume K((t))-analytic manifolds to have a countable basis for
their topology.

For any smooth variety X over k((t)) and for any K ∈ Fieldk the set X (K((t)))
has a natural structure of K((t))-analytic manifold. More generally, if X is a smooth
variety over k((t)), X a variety over k, K ∈ Fieldk, and r ∈ N, the set hX×X×Zr(K)
has a natural structure of K((t))-analytic manifold as product manifold of X (K((t))
indexed by X(K) × Zr.

The following Theorem asserts that definable subassignments are closely related
to analytic manifolds; its proof is given below.

3.2.1. Theorem. — Let Z be a nonempty definable subassignment of hW and f :
Z → h[1, 0, 0] a definable morphism, with W = X ×X×Zr, X a variety over k((t)),
and X a variety over k. Let {Xi}i be a finite partition of X into smooth varieties.

(i) There exists a finite partition of Z into definable subassignments Zj such that,
for each K in Fieldk and each j, the set Zj(K) is a K((t))-analytic submanifold
of hXi×X×Zr(K) for some i only depending on j and such that the restriction
f |Zj

(K) : Zj(K) → K((t)) is K((t))-analytic.
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(ii) If Zi is a partition as in (i), then KdimZ equals

max
j, K∈Fieldk,

(dimZj(K)),

where dimZj(K) denotes the dimension as a K((t))-analytic manifold.
(iii) There exists a definable subassignment Z ′ satisfying Kdim (Z \ Z ′) < KdimZ

and such that Z ′(K) is a K((t))-analytic manifold and f |Z′(K) : Z ′(K) →
K((t)) is K((t))-analytic for each K in Fieldk.

3.3. — Given a subassignment Z of hW with W as in Theorem 3.2.1 and X → X ′

an embedding of X into a smooth variety X ′ over k((t)) and K in Fieldk, we put on
Z(K) the induced topology coming from the manifold structure on hX ′×X×Zr(K).
This topology is independent of the embedding X → X ′. Many notions of general
topology have a meaning in GDefk, for example, if f : Z → Y is a definable
morphism in GDefk, we say f is continuous if for each field K over k the map
f(K) : Z(K) → Y (K) is continuous. Similarly, for Z ⊂ Y in GDefk, one can
construct definable subassignments int(Z) and cl(Z) such that for each K in Fieldk

the set int(Z)(K), resp. clZ(K), is the interior, resp. the closure, of Z(K) in Y (K).

3.3.1. Theorem. — Let Z and Y be in GDefk.

(i) If f : Z → Y is a definable morphism in GDefk, then KdimZ ≥ Kdim f(Z).
If f is a definable isomorphism, then KdimZ = KdimY .

(ii) The inequality

Kdim (Z × Y ) ≤ KdimZ + KdimY

holds.
(iii) If Z and Y are definable subassignments of the same subassignment in GDefk,

one has

Kdim (Z ∪ Y ) = max(KdimZ, KdimY ).

(iv) If Z ⊂ Y , let cl(Z) be the definable subassignment which is the closure of Z in
Y as in 3.3. Then

Kdim (cl(Z) \ Z) < KdimZ.

(v) The number KdimZ is equal to the largest number d such that there exists a
definable morphism f : Z → h[d, 0, 0] such that f(Z) has nonempty interior in
h[d, 0, 0] for the topology of section 3.3, and with f(Z) the image of Z under
f .

3.3.2. Example. — The inequality in (ii) of Theorem 3.3.1 can be strict: Sup-
pose that −1 does not have a square root in k. Let Z, resp. Y , be a definable
subassignment of h[1, 0, 0] given by the formula x = x ∧ ∃y ∈ h[1, 0, 0] y2 = −1,
resp. x = x ∧ ∀y ∈ h[1, 0, 0] y2 6= −1, where x runs over h[1, 0, 0]. Then the Zariski
closure of both Z and Y is A1

k((t)), hence they both have dimension 1, but the
definable subassignment Z × Y is empty, hence its dimension is −∞.
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Proof of Theorem 3.3.1. — Let first Z be a definable subassingnment of h[m,n, r]
for some m,n, r, and Y a definable subassingnment of h[m′, n′, r′] for some m′, n′, r′.

Let L be the language LVal together with the following additional relation sym-
bols:

(1) for each LOrd-formula ϕ in n free variables the n-ary relation symbol Rϕ inter-
preted as follows: Rϕ(a1, ..., an) if and only if ϕ(ord(a1), ..., ord(an)) holds;

(2) for each LRes-formula ϕ in n free variables the n-ary relation symbol Rϕ inter-
preted as follows: Rϕ(a1, ..., an) if and only if ϕ(ac(a1), ..., ac(an)) holds.

For each K in Fieldk let LK be the language L with additional constant sym-
bols for all elements of K((t)). Then, for each K in Fieldk, it follows from Theo-
rem 2.1.1 that the structure (K((t)),LK) has elimination of quantifiers; moreover,
(K((t)),LK) satisfies the conditions of Proposition 2.15 of [15], with a topology as
in 3.3. Thus, using the terminology of [15], there is a dimension function algdim -
defined via the Zariski closure of definable sets - on the LK-definable subsets of the
structure (K((t)),LK) for each K.

We claim that

(3.3.1) max
K∈Fieldk, (y,z)∈Kn×Zr

algdim (Z(y,z),K) = KdimZ,

with Z(y,z),K = Z(K) ∩ (K((t))m × {(y, z)}), from which the Theorem will follow.
The subassignment Z is given by a formula ϕ(x, y, z), where x are the Val-

variables, y the Res-variables and z the Ord-variables. By Denef-Pas quantifier
elimination Theorem 2.1.1, we can write ϕ as a disjunction over j of formulas of the
form

(3.3.2)
ψj(z, ordf1j(x), . . . , ordfrj(x)) ∧i fij(x) 6= 0
∧ θj(y, acg1j(x), . . . , acgsj(x)) ∧i gij(x) 6= 0
∧ h1j(x) = 0 ∧ . . . ∧ htj(x) = 0,

with fij , gij, hij polynomials - strictly speaking, these polynomials are over the con-
stant symbols of LVal - over k((t)) in the variables x, ψj LVal-formulas and θj LRes-
formulas.

Note that the first two lines of (3.3.2) describe an open set for each j (for the
topology as in section 3.3). Let Vj be the variety over k((t)) associated to the ideal
(h1j , . . . , htj), and let Vjℓ be the irreducible components over k((t)). Let j, ℓ be such
that Vjℓ has maximal dimension with the property that there exists K in Fieldk

and (y0, z0) ∈ Kn × Zr such that Vjℓ(K((t)) has nonempty intersection with U(K),
where U is the definable subassignment in DefK given by

ψj(z0, ord(f1j(x)), . . . , ord(frj(x))) ∧i fij(x) 6= 0
∧ θj(y0, ac(g1j(x)), . . . , ac(gsj(x))) ∧i gij(x) 6= 0.

Then it is clear by the definitions that for such K and (y0, z0) we have

algdim (Z(y0,z0),K) = KdimZ,

hence (3.3.1) follows.
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Theorem 3.3.1 now follows for Z ⊂ h[m,n, r], Y ⊂ h[m′, n′, r′] by (3.3.1) and
by the equivalent properties of algdim stated in [15]. For example, to prove (i) we
consider the definable morphism

f ′ := π × f : Z → h[0, n, r] × Y : x 7→ (π(x), f(x))

with π : Z → h[0, n, r] the projection. We then compute

Kdim (Z) = max
K∈Fieldk, x∈Kn×Zr

algdim (Zx,K)

≥ max
K∈Fieldk, y∈Kn+n′×Zr+r′

(algdim (f ′(Z)y,K))

= Kdim f ′(Z)

= Kdim f(Z),

with f ′(Z)y,K := Y (K) ∩ (K((t))m′
× {y}). Indeed, the inequality holds by the

equivalent property for algdim for fixed x, K, and y above x, and the last equality
follows from the definition of Kdim.

These results extend to any definable subassignments Z and Y of functors of the
form hW with W = X × X × Zr, X a variety over k((t)), X a variety over k, by
using affine charts on X and X.

Proof of Theorem 3.2.1. — Theorem 3.2.1 for Z ⊂ h[m,n, r] follows by the same
proof as the proof of Lemma 3.12 of [10], the first part of the proof of Lemma 3.18
of [10], and the proof of Proposition 3.29 of [10]. For the convenience of the reader
we give an outline of this argument and refer to [10] for the details.

We use the notation of the proof of Theorem 3.3.1. Let Z ⊂ h[m,n, r], ϕ, and Vjℓ

be as in the proof of Theorem 3.3.1. If one takes a partition of each Vjl into smooth
k((t))-subvarieties which are irreducible over k((t)), noting that the first two lines of
(3.3.2) describe an open set, one can easily partition Z into definable manifolds as
in the statement (i) by taking appropriate Boolean combinations (see Lemma 3.12
in [10] for details).

For the part of statement (i) about f : Z ⊂ h[m,n, r] → h[1, 0, 0] one uses
induction on the dimension of Z to obtain a finite partition of Z such that the
restriction of f to each part is continuous (as in the proof of Proposition 3.29 in
[10]), hence one may suppose that f is continuous. Then one partitions the graph
Γ(f) of f into manifolds as in (i) and one refines the partition such that the tangent
map of the projection π : Γ(f) → h[m,n, r] has constant rank on each part (as
in the first part of the proof of Lemma 3.18 of [10]). It then follows that on each
part of this partition the map π is an analytic isomorphism between manifolds with
analytic inverse f .

Statement (ii) for Z ⊂ h[m,n, r] follows from Theorem 3.3.1 (iii) and (3.3.1) in
its proof.

Statement (iii) for Z ⊂ h[m,n, r] follows easily from (i) and Theorem 3.3.1, by
taking the parts Zj of maximal dimension among the parts obtained in (i), and
taking the union of Zj \ ∪i6=jcl(Zi) for Z ′.
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Again, this extends to any definable subassignment Z of hW withW = X×X×Zr ,
X a variety over k((t)), X a variety over k, by using affine charts on X and X.

3.4. Relative dimension. — Let Z and Y be in GDefk and let f : Z → Y be a
definable morphism. For every point x on Y let Zx be its fiber, as defined in section
2.6.

For i ∈ N ∪ {−∞}, we say Z is of relative dimension ≤ i rel. f if KdimZx ≤ i
for every point x in Y . We say Z is equidimensional of relative dimension i rel. f if
KdimZx = i for every point x in Y .

By Proposition 1.4 of [15] and by using similar arguments as the ones in the proof
of Theorem 3.3.1, we deduce the following:

3.4.1. Proposition. — Let Z and Y be in GDefk and let f : Z → Y be a de-
finable morphism. For every point x on Y let Zx be its fiber (as in section 2.6).
The morphism H : Y → hZ which sends x to KdimZx if Zx is nonempty and to
−1 otherwise is a definable morphism. For i ∈ {0, 1, . . .} let Yi be the definable
subassignment of Y given by H(x) = i. Then, the definable subassignment f−1(Yi)
has dimension i+ KdimYi.

4. Summation over Presburger sets

4.1. Presbuger sets. — Let G denote a Z-group, that is, a group which is el-
ementary equivalent to the integers Z in the Presburger language LPR. We call
(G,LPR) a Presburger structure. By a Presburger set, function, etc., we mean a
LPR-definable set, function. We recall that the theory Th(Z,LPR) has quantifier
elimination in LPR and is decidable [25]. Let S be a Presburger set. We call a func-
tion f : X ⊂ S ×Gm → G linear if there is a definable function γ from S to G, and
integers 0 ≤ ci < ni and ai, for i = 1, . . . , m, such that for every x = (s, x1, . . . , xm)
in X, xi − ci ≡ 0 (mod ni) and

(4.1.1) f(x) =

m∑

i=1

ai(
xi − ci
ni

) + γ(s).

We define similarly linear maps g : X → Gn.
From now on in this section we shall assume G = Z for simplicity.

4.2. Constructible Presburger functions. — We consider a formal symbol L
and the ring

A := Z
[
L,L−1,

( 1

1 − L−i

)

i>0

]
.

Note that for every real number q > 1, there is a unique morphism of rings ϑq :
A → R mapping L to q and that, for q transcendental, ϑq is injective. We define a
partial ordering of A by setting a ≥ b if, for every real number q > 1, ϑq(a) ≥ ϑq(b).
We denote by A+ the set {a ∈ A | a ≥ 0}. Note that Li, i in Z, Li − Lj , i > j, and

1
1−L−i , i > 0, all lie in A+, but for instance not L − 2.
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Now if S is a definable subset of Zm we define the ring P(S) of constructible
Presburger functions on S as the subring of the ring of functions S → A generated
by all constant functions into A, all definable functions S → Z and all functions of
the form Lβ with β a Z-valued definable function on S. We denote by P+(S) the
semiring of functions in P(S) with values in A+ and write f ≥ g if f−g is in P+(S).
This defines a partial ordering on P(S). When S is one point we identify P(S) and
A.

4.3. Cell decomposition for Presburger sets. — In this subsection we recall
the cell decomposition for Presburger sets as presented in [3]. Let G denote a Z-
group. Fix a Presburger set S. We define Presburger cells parametrized by S, or
Presburger S-cells.

4.3.1. Definition. — A cell of type (0) (also called a (0)-cell) is a subset of S×G
which is the graph of a definable morphism S ′ → G, with S ′ a definable subset of
S. A (1)-cell is a subset A of S ×G of the form

(4.3.1) {(s, x) ∈ S ′ ×G | α(s)�1x�2β(s), x ≡ c (mod n)},

with S ′ a definable subset of S, α and β definable functions S ′ → G, c and n integers
such that 0 ≤ c < n, and �i either ≤ or no condition, and such that the cardinality
of the fibers As = {x ∈ G | (s, x) ∈ A} cannot be bounded uniformly in s ∈ S ′ by an
integer. Let ij ∈ {0, 1} for j = 1, . . . , m and x = (x1, . . . , xm). A (i1, . . . , im, 1)-cell
is a subset A of S ×Gm+1 of the form

(4.3.2) A = {(x, t) ∈ S ×Gm+1 | x ∈ D, α(x)�1t�2β(x), t ≡ c (mod n)},

withD = πm(A) a (i1, . . . , im)-cell in S×Gm, πm denoting the projection S×Gm+1 →
S ×Gm, α, β : D → G S-linear functions, �i either ≤ or no condition and integers
0 ≤ c < n such that the cardinality of the fibers Ax = {t ∈ G | (x, t) ∈ A} cannot
be bounded uniformly in x ∈ D by an integer.
A (i1, . . . , im, 0)-cell is a set of the form

{(x, t) ∈ S ×Gm+1 | x ∈ D, α(x) = t},

with α : D → G a S-linear function and D ⊂ S ×Gm a (i1, . . . , im)-cell.

A subset of S×Gm is called a S-cell if it is a (i1, . . . , im)-cell for some ij in {0, 1}.
Now we can state the following:

4.3.2. Theorem (Presburger Cell Decomposition [3])
Let S be a LPR-definable set, let X be a LPR-definable subset of S × Gm and

f : X → G a LPR-definable map. Then there exists a finite partition P of X into
S-cells, such that the restriction f |A : A→ G is S-linear for every cell A in P.

4.3.3. Remark. — Of course, one could assume S is the one point set in the
above statement, but it is more convenient to express it that way, in view of further
generalizations.
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4.4. The basic rationality result. — Let S be a definable Presburger set. We
consider the ring P(S)[[T1, · · · , Tr]] of formal series with coefficients in the ring
P(S). If α is a definable function on S with values in Nr, we write T α for the
series

∑
j∈Nr 1Cj

T j in P(S)[[T1, · · · , Tr]], where 1Cj
is the characteristic function

of the subset Cj of S defined by the formula α(x) = j. We consider the subring
P(S){T1, · · · , Tr} of power series of the form

∑
i∈I aiT

αi with I finite, ai in P(S),
and αi a definable function on S with values in Nr. In other words P(S){T1, · · · , Tr}
is the P(S)-subalgebra of P(S)[[T1, · · · , Tr]] generated by elements of the form T α

with α : S → Nr definable.
We denote by Γ the multiplicative set of polynomials in P(S)[T1, · · · , Tr] gen-

erated by the polynomials 1 − LαT β := 1 − Lα
∏

1≤i≤r T
βi, for α in Z and β =

(β1, · · · , βr) in Nr \ {0, · · · , 0}. We denote by P(S){T1, · · · , Tr}Γ the localisation of
P(S){T1, · · · , Tr} with respect to Γ. Since the polynomials 1 − LαT β are invertible
in P(S)[[T1, · · · , Tr]], there exists a canonical morphism of rings

P(S){T1, · · · , Tr}Γ −→ P(S)[[T1, · · · , Tr]],

which is injective. We denote by P(S)[[T1, · · · , Tr]]Γ, or by P(S)[[T ]]Γ for short, the
image of this morphism, which we identify with P(S){T1, · · · , Tr}Γ.

We shall consider the P(S)-module P(S)[[T1, T
−1
1 · · · , Tr, T

−1
r ]], or P(S)[[T, T−1]]

for short. Note that there is a natural product on P(S)[[T, T−1]], the Hadamard
product, defined by

f ∗ g =
∑

i∈Zr

figiT
i,

for f =
∑

i∈Zr fiT
i and g =

∑
i∈Zr giT

i, that endows P(S)[[T, T−1]] with a ring
structure.

For ε ∈ {+1,−1}r, we denote by ε∗ the P(S)-module automorphism of
P(S)[[T, T−1]] which sends

∑
i∈Zr aiT

i to
∑

i∈Zr aiT
εi with εi = (ε1i1, . . . , εrir). We

denote by P(S)[[T, T−1]]Γ the P(S)-submodule of P(S)[[T, T−1]] generated by the
submodules ε∗(P(S)[[T ]]Γ) for all ε ∈ {+1,−1}r.

For ϕ in P(S × Zr), and i in Zr, we shall write ϕi for the restriction of ϕ to
S × {i}, viewed as an element of P(S), and consider the series

M(ϕ) :=
∑

i∈Zr

ϕiT
i

in P(S)[[T, T−1]].

4.4.1. Theorem. — Let S be a definable set. For every ϕ in P(S×Zr), the series
M(ϕ) belongs to P(S)[[T, T−1]]Γ. Furthermore, the mapping ϕ 7→ M(ϕ) induces a
P(S)-linear ring isomorphism

M : P(S × Zr) −→ P(S)[[T, T−1]]Γ.

4.4.2. Remark. — The product on P(S)[[T, T−1]]Γ is the Hadamard product.
Note that P(S)[[T, T−1]]Γ is stable by Hadamard product since M is a bijection.
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Proof. — The proof of the first statement is quite easy using the cell decomposition
for Presburger sets recalled in Theorem 4.3.2 and quite similar statements (compare
with Lemma 3.2 of [9]) may be found in the literature. Take ϕ in P(S × Zr). We
may first assume the support of ϕ is contained in S×Nr. By the cell decomposition
Theorem we may furthermore assume that the support of ϕ is contained in a S-cell
A and that the restriction of ϕ to A is of the form

∏
1≤k≤d αkL

β where αk and β
are S-linear functions on A. Let us first consider the case r = 1. When A is a
(0)-cell, there is nothing to prove. Assume now A is a (1)-cell. Consider first the
case where there is no condition �2 in (4.3.1). By Lemma 4.4.3, we can perform a
direct computation of M(ϕ) (which essentially amounts to summing (derivatives) of
geometric series of monomials in L and T1 along an infinite arithmetic progression)

which yields that M(ϕ) is a finite sum of terms of the form ψ(s)
T

γ(s)
1

(1−LaT b
1 )c , with ψ(s)

in P(S), γ : S → N S-linear, a in Z, b > 0 and c in N.

4.4.3. Lemma. — Let R be a ring and P be a degree d polynomial P in R[X].
The equality

(4.4.1)
∑

n≥a

P (n)T n =

d∑

i=0

[∆iP (a)]T a+i

(1 − T )i+1

holds in R[[T ]]. Here ∆i is the i-th iterate of the difference operator P 7→ P (X +
1) − P (X) with the convention ∆0P = P .

When there is a condition �2 in (4.3.1), we may express M(ϕ) as the difference
of two series of the preceding type.

Consider now the case r = 2. Let us first sum with respect to the variable T2

in the series M(ϕ). By what we know about the case r = 1, relatively to S × N,

we get that M(ϕ) is a finite sum of terms of the form
∑

i∈N
ψ(s, i)T i

1
T

γ(s,i)
2

(1−LaT b
2 )c , with

ψ(s, i) in P(S×N), γ : S → N definable, a in Z, b > 0 and c in N. So we just need

summing up series of the type
∑

i∈N ψ(s, i)T i
1T

γ(s,i)
2 , which can be done exactly in

the same way as the case r = 1, except that instead of dealing with geometric series
in monomials of L and T1, we have now to deal with geometric series in monomials
of L, T1 and T2 which will have the effect of producing denominators of the form
1−LaT b

1T
c
2 , with a in Z, and b and c strictly positive integers. The case where M(ϕ)

belongs to P(S)[[T, T−1]]Γ for general r is completely similar. Now it remains to
show that every element of m in P(S)[[T, T−1]]Γ is of the form M(ϕ). We may
assume m is in P(S)[[T ]]Γ, and furthermore, by linearity that it is of the form T α

Q

α : S → Nr definable and Q in Γ, in which case the result is easy.

4.5. — We denote by P(S){{T}} the subring of P(S)[[T ]]Γ consisting of series
with coefficients in P(S) such that, for every s in S, at most a finite number of
coefficients have non zero value at s. For instance, for γ : S → N, the series
1−T γ

1−T
belongs to P(S){{T}}, say if r = 1. We denote by P(S)[[T ]]Σ the subring of

P(S)[[T ]]Γ whose elements are of the form P
Q

with P in P(S){{T}} and Q in Σ, the
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multiplicative set generated by the polynomials 1−LαT β := 1−Lα
∏

1≤i≤r T
βi, for

α in Z \N and β = (β1, · · · , βr) in Nr. Also we shall denote by P(S)[[T, T−1]]Σ the
P(S)-submodule of P(S)[[T, T−1]]Γ generated by the submodules ε∗(P(S)[[T ]]Σ) for
ε ∈ {+1,−1}r.

4.6. Summability. — Recall the notion of summable families in R or C, cf. [2]
VII.16. In particular a familly (zi)i∈I of complex numbers is summable if and only if
the family (|zi|)i∈I is summable in R. We shall say a family (ai)i∈I in A is summable
if, for every q > 1, the family (ϑq(ai))i∈I is summable in R. We shall say a function ϕ
in P(S×Zr) is S-integrable if, for every s in S, the family (ϕ(s, i))i∈Zr is summable.
We shall denote by ISP(S × Zr) the P(S)-module of S-integrable functions.

4.6.1. Proposition. — Let S be a definable set. The transformation M induces
an isomorphism of P(S)-modules

M : ISP(S × Zr) −→ P(S)[[T, T−1]]Σ.

Proof. — Let ϕ be in P(S×Zr). We want to prove that ϕ is S-integrable if and only
if M(ϕ) lies in P(S)[[T, T−1]]Σ. We may assume the support of ϕ is contained in
S×Nr, so that M(ϕ) belongs to P(S)[[T ]]Γ. It is quite clear that if M(ϕ) belongs to
P(S)[[T ]]Σ, then ϕ is S-integrable. Assume now M(ϕ) is not in P(S)[[T ]]Σ. Then,
there exists s0 in S and q > 1 such that, extending ϑq coefficientwise to series,

ϑq(M(ϕ))|s=s0 =
Ps0(T1, . . . , Tr)

Qs0(T1, . . . , Tr)
,

with Ps0 and Qs0 in R[T1, . . . , Tr], such that Ps0 and Qs0 have no non constant
common factor in R[T1, . . . , Tr], and such that for some α ≥ 0 and βi ≥ 0, β 6=
(0, · · · , 0), the polynomials Qs0 and 1 − qαT β1

1 . . . T βr
r have a non constant common

factor in R[T1, . . . , Tr]. Indeed, otherwise, since one can take q to be transcendental,

for every s0 in S, one could write M(ϕ)|s=s0
as a quotient

Ps0

Qs0
of polynomials in A[T ],

with Qs0 in Σ. Since the polynomials Qs0 all divide a fixed non zero polynomial in
A[T ], they have a common multiple Q in Σ, so we can assume Qs0 is independent
of s0, hence there exists P in P(S){{T}} which gives Ps0 when evaluated at s0 for
every s0 in S, and M(ϕ) would belong to P(S)[[T ]]Σ.

It follows there exists z1, . . . , zr in C, with |z1| ≤ 1, . . . , |zr| ≤ 1, such
that Ps0(z1, . . . , zr) 6= 0 and Qs0(z1, . . . , zr) = 0. In particular the family
(ϑq(ϕ(s0, i)))i∈Nr cannot be summable, since the summability of a family of
real numbers (ai)i∈Nr implies that the series

∑
i∈Nr aiz

i is convergent for every
z = (z1, . . . , zr) in Cr with |z1| ≤ 1, . . . , |zr| ≤ 1.

We may also characterise S-integrability in terms of the L-degree as follows. We
consider the unique extension degL : A → Z ∪ {−∞} of the the function degree
in L from Z[L,L−1] to Z ∪ {−∞} which satisfies degL(1 − L−i) = 0 for i > 0 and
degL(ab) = degL(a) + degL(b). We have degL(a + b) ≤ sup(degL(a), degL(b)), with
equality if a and b are both in A+. Now if S is a definable set and ϕ is a function
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in P(S), we denote by degL(ϕ) the function |S| → Z ∪ {−∞} which sends s to
degL(ϕ(s)).

4.6.2. Proposition. — The following conditions are equivalent for a function ϕ
in P(S × Zr):

(i) ϕ is S-integrable.
(ii) For every s in S, lim|x|7→∞ degL(ϕ(s, x)) = −∞, where |x| stands for |x1| +

· · ·+ |xr|.
(iii) lim|x|7→∞ ϑq(ϕ(s, x)) → 0 for each q > 1.

Proof. — Take ϕ in P(S × Zr). If ϕ is S-integrable, we know by Proposition 4.6.1
that M(ϕ) is in P(S)[[T, T−1]]Σ. But if M(ϕ) belongs to P(S)[[T, T−1]]Σ, the
condition that for every s in S, lim|x|7→∞ degL(ϕ)(s, x) = −∞, is clearly verified.
For the opposite implication, we may by the cell decomposition Theorem assume
that the support of ϕ is contained in a S-cell A and that the restriction of ϕ to A
is of the form

∏
1≤k≤d αkL

β where αk and β are S-linear functions on A and that
furthermore, for fixed s, lim|x|7→∞ β(s, x) = −∞. These conditions clearly imply the
summability of the corresponding series. This proves the equivalence of (i) and (ii).
The equivalence of (ii) and (iii) is clear.

4.7. Evaluation at 1. — We write T = (T1, . . . , Tr) = (T ′, Tr). If f is
in A[[T, T−1]]Σ, evaluation at Tr = 1 yields a well defined element f|Tr=1 in

A[[T ′, T ′−1]]Σ. Indeed, if f = P
Q

is in A[[T ]]Σ with P in A{{T}} and Q in Σ, we set

f|Tr=1 =
P|Tr=1

Q|Tr=1
, which depends only on f . Then one extends this definition to the

whole of A[[T, T−1]]Σ by using ε∗.

4.7.1. Proposition. — Let S be a definable set. There is a unique morphism

ev(Tr = 1) : P(S)[[T, T−1]]Σ −→ P(S)[[T ′, T ′−1]]Σ

such that, for every f in P(S)[[T, T−1]]Σ and every s0 in S,

(4.7.1) (ev(Tr = 1)f)|s=s0 = (f|s=s0)|Tr=1.

Proof. — Uniqueness being clear, let us prove existence. Take f in P(S)[[T, T−1]]Σ.
We may assume f is P(S)[[T ]]Σ. Let us write f = P

Q
with P in P(S){T} and

Q in Γ. Assume first the polynomial Q is not divisible by 1 − Tr. We can then

evaluate P and Q at Tr = 1 and set f ′ =
P|Tr=1

Q|Tr=1
. Clearly f ′ satisfies (4.7.1) and

belongs to P(S)[[T ′]]Γ. It follows from Proposition 4.6.1 that a series in P(S)[[T ′]]Γ,
whose restriction to s = s0 belongs to A[[T ′]]Σ for every s0 in S, lies in fact in
P(S)[[T ′]]Σ, hence f ′ lies in P(S)[[T ′]]Σ. If 1 − Tr divides the polynomial Q, we
write Q = (1 − Tr)

aQ′ with Q′ in Γ not divisible by 1 − Tr. For every s0 in S, the
polynomial P|s=s0

is divisible by (1 − Tr)
a in A[T ] by hypothesis, so we can write

it as P|s=s0 = (1 − Tr)
aP ′

s0
with P ′

s0
in A[T ]. It follows there exists a unique P ′ in

P(S){T} such that P ′
|s=s0

= P ′
s0

for every s0, so we can write f = P ′

Q′ and we are

back to the first case.
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4.8. — Let ϕ be in ISP(S×Zr). By Proposition 4.6.1 and Proposition 4.7.1 there
exists a unique function ϕ̃ in ISP(S × Zr−1) such that

M(ϕ̃) = ev(Tr = 1)(M(ϕ)).

In particular, for every q > 1 and every (s, i) in S × Zr−1,

ϑq(ϕ̃(s, i)) =
∑

j∈Z

ϑq(ϕ(s, i, j)).

Now set

µS(ϕ) := ev(T1 = 1) ◦ · · · ◦ ev(Tr = 1)(M(ϕ)).

The function µS(ϕ) lies in P(S), and for every q > 1 and s in S,

(4.8.1) ϑq((µS(ϕ))(s)) =
∑

i∈Zr

ϑq(ϕ(s, i)).

The mapping ϕ 7→ µS(ϕ) gives a morphism of P(S)-modules µS : ISP(S × Zr) →
P(S).

4.8.1. Remark. — Clearly µS(ϕ) is the unique function in P(S) that satisfies
(4.8.1).

We have the following statement of Fubini type:

4.8.2. Proposition. — Let S be a definable set and let ϕ be in P(S ×Zr). Write
r = r1 + r2 and identify Zr with Zr1 × Zr2.

(1) If ϕ is S-integrable then ϕ, as a function in P(S × Zr1 × Zr2), is S × Zr1-
integrable, µS×Zr1 (ϕ) is S-integrable and

µS(µS×Zr1 (ϕ)) = µS(ϕ).

(2) Assume ϕ is in P+(S × Zr). Then ϕ is S-integrable if and only it is S × Zr1-
integrable and µS×Zr1(ϕ) is S-integrable.

Proof. — In view of (4.8.1), the statement amounts to the fact that if a family of
real numbers (ai,j)(i,j)∈Zr1×Zr2 is summable then, for every j, (ai,j)j∈Zr2 is summable,
the family (bi =

∑
j∈Zr2 ai,j)i∈Zr1 is summable,

∑
i∈Zr1 bj =

∑
(i,j)∈Zr1×Zr2 ai,j, and

that the reverse statement holds if the ai,j’s are all in R+.

Let λ : S×Zr → S×Zs be a definable morphism commuting with the projections
to S. Let Z be a definable subset of S × Zr on which λ is injective. Let ϕ be a
function in P(S × Zr) which is zero outside Z. We define the function λ+(ϕ) on
S × Zs by λ+(ϕ)(λ(s, i)) = ϕ(s, i) and λ+(ϕ)(s, j) = 0 if (s, j) does not lie in the
image of λ. Clearly λ+(ϕ) lies in P(S × Zs).

The following statement will be useful in the proof of the change of variable
formula:
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4.8.3. Proposition. — Let S be a definable set and let λ : S × Zr → S × Zs be a
definable morphism commuting with the projections to S. Let Z be a definable subset
of S × Zr on which λ is injective. Let ϕ be a function in P(S × Zr) which is zero
outside Z. Then ϕ is S-integrable if and only if λ+(ϕ) is S-integrable. Furthermore,
if these conditions hold, then

µS(ϕ) = µS(λ+(ϕ)).

Proof. — The first statement follows directly from the definition of S-integrability
and the second from Remark 4.8.1.

4.9. Generalization: From Presburger sets to definable subassignments.
— Note that any Presburger subset S of Zm is clearly also LDP,P-definable. Fur-
thermore, it follows from the Denef-Pas quantifier elimination Theorem 2.1.1 that a
function f : S → Z is LDP,P-definable if and only if it is LPR-definable.

Let us generalize what we did in 4.1-4.8 for Presburger subsets to definable sub-
assignments in GDefk(LDP,P).

Let S be a definable subassignment in GDefk(LDP,P). We denote by |S| its set of
points and we define the ring P(S) of constructible Presburger functions on S as the
subring of the ring of functions |S| → A generated by constant functions, definable
functions S → Z and functions of the form Lβ with β a Z-valued definable function
on S. We also denote by P+(S) the semiring of functions in P(S) with values in
A+. Everything we did in 4.1-4.8, including the proof of Theorem 4.3.2, generalizes
mutatis mutandis to that more general situation, up to minor changes like replacing
S × Zr by S × hZr = S[0, 0, r] or s ∈ S by s ∈ |S|. This will allow us to use
constructions and results in 4.1-4.8 for definable subassignments in GDefk(LDP,P)
in the rest of the paper by refering to the corresponding ones for Presburger sets.
Note however that the ring P(hZr) (with hZr := h[0, 0, r]) is somewhat larger that
P(Zr), since it contains P(Zr) and is generated as a ring by P(Zr) and characteristic
functions of definable subassignments of the final object hSpec k.

5. Constructible motivic functions

From now on and until the end of the paper, we shall work with LDP,P as Denef-
Pas language.

5.1. Grothendieck rings and semirings. — In previous publications on mo-
tivic integration, free abelian groups of varieties (or Chow motives) over k were used
to build up Grothendieck rings. Here we shall consider a LDP-variant using defin-
able subassignments. Also, since in integration theory “positive” functions play an
important role, we shall also consider Grothendieck semirings.
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5.1.1. Semirings. — Let us recall a (commutative) semiring A is a set equipped
with two operations: addition and multiplication. With respect to addition A is a
commutative semigroup (monoid) with 0 as unit element. With respect to multipli-
cation A is a commutative semigroup with 1 as a unit element. Furthermore the two
structures are connected by the axioms x(y+z) = xy+xz and 0x = 0. A morphism
of semirings is a mapping compatible with the unit elements and the operations.
A module (or semimodule) over a semiring A is a commutative semigroup M with
an operation · : A ×M → A satisfying the familiar axioms (ab) ·m = a · (b · m),
(a + b) · m = a · m + b · m, a · (m + n) = a · m + a · n, 0 · m = 0, a · 0 = 0 and
1 ·m = m. One defines morphisms of A-modules in the usual way. Also if M and
N are A-modules, one can define their tensor M ⊗A N product in the usual way
by generators and relations. It is an A-module representing the functor of bilinear
morphisms on M × N and its existence also follows from classical representabil-
ity results. If B is an A-algebra (that is, a semiring together with a morphism
A→ B), for every A-module M the module B⊗AM has a natural B-module struc-
ture compatible with the A-module structure. Also if B and C are A-algebras, the
formula

∑
i(bi ⊗ ci)

∑
j(b

′
j ⊗ c′j) =

∑
i,j bib

′
j ⊗ cic

′
j endowes B ⊗A C with a structure

of A-algebra.

5.1.2. — Let Z be a definable subassignment in GDefk. We shall use in a essential
way the subcategory RDefZ of GDefZ , whose objects are definable subassignments
Y of Z×hAn

k
, for some n, the morphism Y → Z being the one induced by projection

on the Z factor. If Y and Y ′ are two objects of RDefZ , their fiber product Y ⊗Z Y
′

together with the canonical morphism Y ⊗Z Y
′ → Z yields an object of RDefZ .

We define the Grothendieck semigroup SK0(RDefZ,k(LDP)) - or SK0(RDefZ) for
short -, as the quotient of the free abelian semigroup over symbols [Y → Z] with
Y → Z in RDefZ by relations

(5.1.1) [∅ → Z] = 0,

(5.1.2) [Y → Z] = [Y ′ → Z]

if Y → Z is isomorphic to Y ′ → Z and

(5.1.3) [(Y ∪ Y ′) → Z] + [(Y ∩ Y ′) → Z] = [Y → Z] + [Y ′ → Z]

for Y and Y ′ subasignments of some hW → Z. Similarly one defines the
Grothendieck group K0(RDefZ,k(LDP)), or K0(RDefZ), as the quotient of the
free abelian group, over symbols [Y → Z] with Y → Z in RDefZ by relations (5.1.2)
and (5.1.3). Cartesian fiber product over Z induces a natural semiring, resp. ring,
structure on SK0(RDefZ), resp. K0(RDefZ), by setting

[Y → Z][Y ′ → Z] = [Y ⊗Z Y
′ → Z].

Let us remark that [Z → Z] is the multiplicative unit and that K0(RDefZ) is noth-
ing but the ring obtained from SK0(RDefZ) by inverting additively every element.
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However note that there is no reason for the canonical morphism SK0(RDefZ) →
K0(RDefZ) to be injective in general.

If f is a morphism Z → Z ′ in GDefk, the functor f ∗ induces a semir-
ing morphism f ∗ : SK0(RDefZ′) → SK0(RDefZ) and a ring morphism f ∗ :
K0(RDefZ′) → K0(RDefZ). Also, if z is a point of Z ′, i∗z induces a semir-
ing morphism i∗z : SK0(RDefZ′) → SK0(RDefk(z)) and a ring morphism
i∗z : K0(RDefZ′) → K0(RDefk(z)).

Note that any a in SK0(RDefZ) is of the form [π : Y → Z], with π a morphism in
GDefk. The definable subassignment π(Y ) depends only on a, we denote it Supp(a).
Note that, by definition, a point z of Z is a point of Supp(a) if and only if i∗z 6= 0.
Also, for a and b in SK0(RDefZ), we have Supp(a + b) = Supp(a) ∪ Supp(b) and
Supp(ab) = Supp(a) ∩ Supp(b).

5.2. Constructible Presburger functions. — In 4.9, we assigned to every Z
in GDefk the ring P(Z) of constructible Presburger functions on Z. If f : Z → Y is
a morphism in GDefk, composition with f yields natural morphisms f ∗ : P(Y ) →
P(Z) and f ∗ : P+(Y ) → P+(Z). Similarly if z is point of Z we have morphisms
i∗z : P(Z) → P(hSpec k(z)) and i∗z : P+(Z) → P+(hSpec k(z)).

For Y a definable subassignment of Z, we denote by 1Y the function in P(Z)
with value 1 on Y and zero on Z \ Y . We shall denote by P0(Z) (resp. P0

+(Z)) the
subring (resp. subsemiring) of P(Z) (resp. P+(Z)) generated by all functions 1Y ,
for Y a definable subassignment of Z, and by the constant function L− 1.

Let us denote by LZ = L the class of Z×hA1
k

in K0(RDefZ) and in SK0(RDefZ).

We also denote by LZ − 1 = L − 1 the class of Z × hA1
k
\{0} in SK0(RDefZ). Note

that (L − 1) + 1 = L in SK0(RDefZ).
We have a canonical ring, resp. semiring, morphism P0(Z) → K0(RDefZ), resp.

P0
+(Z) → SK0(RDefZ), sending 1Y to [Y → Z] and L− 1 to L − 1.

5.2.1. Proposition. — Let S be in GDefk.

(1) Let W be a definable subassignment of h[0, n, 0]. The canonical morphisms

P(S) ⊗P0(S) P
0(S ×W ) −→ P(S ×W )

and

P+(S) ⊗P0
+(S) P

0
+(S ×W ) −→ P+(S ×W )

are isomorphisms.
(2) Let W be a definable subassignment of h[0, 0, r]. The canonical morphisms

K0(RDefS) ⊗P0(S) P
0(S ×W ) −→ K0(RDefS×W )

and

SK0(RDefS) ⊗P0
+(S) P

0
+(S ×W ) −→ SK0(RDefS×W )

are isomorphisms.

Proof. — Follows directly from the second part of Theorem 2.1.1.
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5.3. Constructible motivic functions. — Let Z be a definable subassignment
in GDefk. We define the semiring C+(Z) of positive constructible motivic functions
on Z as

C+(Z) := SK0(RDefZ) ⊗P0
+(Z) P+(Z).

Similarly we define the ring C(Z) of constructible motivic functions on Z as the ring

C(Z) := K0(RDefZ) ⊗P0(Z) P(Z).

Let us remark that C(Z) is nothing but the ring obtained from C+(Z) by inverting
additively every element, and that in general there is no reason for the canonical
morphism C+(Z) → C(Z) to be injective.

For ϕ and ϕ′ in C+(Z), we shall write ϕ ≥ ϕ′ if ϕ = ϕ′ +ϕ′′ for some ϕ′′ in C+(Z).

5.3.1. Proposition. — Let S be in GDefk.

(1) Let W be a definable subassignment of h[0, n, 0]. The canonical morphisms

P(S) ⊗P0(S) K0(RDefS×W ) −→ C(S ×W )

and

P+(S) ⊗P0
+(S) SK0(RDefS×W ) −→ C+(S ×W )

are isomorphisms.
(2) Let W be a definable subassignment of h[0, 0, r]. The canonical morphisms

K0(RDefS) ⊗P0(S) P(S ×W ) −→ C(S ×W )

and

SK0(RDefS) ⊗P0
+(S) P+(S ×W ) −→ C+(S ×W )

are isomorphisms.

Proof. — Direct consequence of Proposition 5.2.1.

Note that C(hSpec k) is canonically isomorphic to K0(RDefk) ⊗Z[L] A and that
C+(hSpec k) is canonically isomorphic to SK0(RDefk) ⊗N[L−1] A+.

5.4. Inverse image of constructible motivic functions. — Let f : Z → Y be
a morphism in GDefk. Since f ∗ as defined on P(Y ) and K0(RDefY ) is compatible
with the morphism P0(Y ) → K0(RDefY ), one gets by tensor product an inverse
image morphism f ∗ : C(Y ) → C(Z). One defines similarly f ∗ : C+(Y ) → C+(Z).
Clearly f ∗ ◦ g∗ = (g ◦ f)∗ and id∗ = id.

Similarly, if z is a point of Z, there are natural extensions i∗z : C(Z) → C(hSpec k(z))
and i∗z : C+(Z) → C+(hSpec k(z)) of the restrictions i∗z already defined.

If Z1 and Z2 are disjoint definable subassignments of some hW , then

(5.4.1) C+(Z1 ∪ Z2) ≃ C+(Z1) ⊕ C+(Z2) and C(Z1 ∪ Z2) ≃ C(Z1) ⊕ C(Z2).

If Z1 and Z2 are in GDefS, then we have canonical morphisms
(5.4.2)
C+(Z1) ⊗C+(S) C+(Z2) → C+(Z1 ×S Z2) and C(Z1) ⊗C(S) C(Z2) → C(Z1 ×S Z2).
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5.5. Push-forward for inclusions. — Let i : Z →֒ Z ′ be an inclusion between
two definable subassignments of hW . Composition with i yields morphisms i! :
K0(RDefZ) → K0(RDefZ′) and i! : SK0(RDefZ) → SK0(RDefZ′). Extension by
zero induce morphisms i! : P(Z) → P(Z ′) and i! : P+(Z) → P+(Z ′). Since they are
compatible on P0(Z) and P0

+(Z), we get by tensor product morphisms i! : C(Z) →
C(Z ′) and i! : C+(Z) → C+(Z ′).

5.6. Push-forward for k-projections. — Let S be a definable subassignment
in GDefk and consider the projection π : S[0, n, 0] → S on the first factor. In this
situation, composition with f gives rise to a functor f! : RDefS[0,n,0] → RDefS and
we shall still denote by f! the morphism between the corresponding Grothendieck
semirings and rings. Let us remark that the projection formula f!(xf

∗(y)) = f!(x)y
clearly holds for x in K0(RDefS[0,n,0]) (resp. SK0(RDefS[0,n,0])) and y in K0(RDefS)
(resp. SK0(RDefS)).

Recall that, by Proposition 5.2.1, we have canonical isomorphisms P(S[0, n, 0]) ≃
P0(S[0, n, 0]) ⊗P0(S) P(S) and P+(S[0, n, 0]) ≃ P0

+(S[0, n, 0]) ⊗P0
+(S) P+(S). So we

may define f! : P(S[0, n, 0]) → P(S) and f! : P+(S[0, n, 0]) → P+(S) by sending∑
i ai ⊗ ϕi to

∑
i f!(ai)ϕi, which is clearly independent of the choices. Now we may

define push-forwards morphisms f! : C(S[0, n, 0]) → C(S) and f! : C+(S[0, n, 0]) →
C+(S) by tensor product. Clearly they satisfy the projection formula

(5.6.1) f!(xf
∗(y)) = f!(x)y.

5.7. Rational series and integrability. — Let S be a definable subassignment
in GDefk. As in 4.4, we consider the power series rings C(S)[[T ]] = C(S)[[T1, . . . , Tr]]
and C(S)[[T, T−1]] = C(S)[[T1, . . . , Tr, T

−1
1 , . . . , T−1

r ]]. We shall set C(S)[[T ]]Γ :=
C(S) ⊗P(S) P(S)[[T ]]Γ and C(S)[[T, T−1]]Γ := C(S) ⊗P(S) P(S)[[T, T−1]]Γ and view
them as C(S)-submodules of C(S)[[T ]] and C(S)[[T, T−1]], respectively.

Now, for ϕ in C(S[0, 0, r]) and i in Zr, we denote by ϕi the restriction of ϕ to
S × {i}, viewed as an element in C(S), and, as in 4.4, we set

M(ϕ) :=
∑

i∈Zr

ϕiT
i

in C(S)[[T, T−1]].
By (2) of Proposition 5.3.1, we have a canonical isomorphism

(5.7.1) C(S[0, 0, r]) ≃ C(S) ⊗P(S) P(S[0, 0, r]).

Since, by the extension of Theorem 4.4.1 to the definable subassignment setting,
we have an isomorphism of P(S)-modules

M : P(S[0, 0, r]) −→ P(S)[[T, T−1]]Γ,

we get by tensoring with C(S) the following general rationality statement.
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5.7.1. Theorem. — Let S be a definable subassignment in GDefk. The mapping
ϕ 7→ M(ϕ) induces a ring isomorphism

M : C(S[0, 0, r]) −→ C(S)[[T, T−1]]Γ.

Similarly, we set

ISC(S[0, 0, r]) := C(S) ⊗P(S) ISP(S[0, 0, r])

and

C(S)[[T, T−1]]Σ := C(S) ⊗P(S) P(S)[[T, T−1]]Σ.

We also define

ISC+(S[0, 0, r]) := C+(S) ⊗P+(S) ISP+(S[0, 0, r]),

where ISP+(S[0, 0, r]) stands for the P+(S)-module P+(S[0, 0, r])∩ISC(S[0, 0, r]). A
function in C(S[0, 0, r]) (resp. C+(S[0, 0, r])) will be called S-integrable if it belongs
to ISC(S[0, 0, r]) (resp. ISC+(S[0, 0, r])).

By Proposition 4.6.1 and tensoring with C(S), the isomorphism M induces an
isomorphism of C(S)-modules

(5.7.2) M : IC(S[0, 0, r]) −→ C(S)[[T, T−1]]Σ.

By tensoring the morphism of P(S)-modules µS : ISP(S[0, 0, r]) → P(S) with
C(S), we get a morphism of C(S)-modules

µS : ISC(S[0, 0, r]) −→ C(S).

Similarly we have a morphism of C+(S)-modules

µS : ISC+(S[0, 0, r]) −→ C+(S).

5.7.2. Proposition. — Let S be a definable subassignment in GDefk and let ϕ
be in C(S × hZr). Write r = r1 + r2 and identify hZr with hZr1 × hZr2 . If ϕ is
S-integrable, then ϕ, as a function in C(S × hZr1 × hZr2 ), is S × hZr1 -integrable,
µS×h

Z
r1

(ϕ) is S-integrable and

µS(µS×h
Z

r1
(ϕ)) = µS(ϕ).

The statement with C replaced by C+ holds also.

Proof. — Follows directly from Proposition 4.8.2 (1).

Let λ : S[0, 0, r] → S[0, 0, s] be a morphism in DefS. Let ϕ be a function in
C(S[0, 0, r]), resp. C+(S[0, 0, r]). Assume ϕ = 1Zϕ with Z a definable subassignment
of S[0, 0, r] on which λ is injective. Thus λ restricts to an isomorphism λ′ between
Z and Z ′ := λ(Z). We set λ+(1Zϕ) := [i′!(λ

′−1)∗i∗](ϕ) in C(S[0, 0, r]), resp. in
C+(S[0, 0, r]), where i and i′ denote respectively the inclusions of Z and Z ′ in S[0, 0, r]
and S[0, 0, s]. Clearly this definition does not depend on the choice of Z.

The following statement follows directly from Proposition 4.8.3:
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5.7.3. Proposition. — Let λ : S[0, 0, r] → S[0, 0, s] be a morphism in GDefS.
Assume λ is injective on a definable subassignment Z in GDefk. Let ϕ be a function
in C(S[0, 0, r]) such that 1Zϕ = ϕ. Then ϕ is S-integrable if and only if λ+(ϕ) is S-
integrable. If these conditions are satisfied then µS(ϕ) = µS(λ+(ϕ)). The statement
with C replaced by C+ holds also.

5.8. Positivity and Fubini. — Let S be a definable subassignment in GDefk. It
is quite clear that if f and g are in P+(S[0, 0, r]), f ≥ g and f is S-integrable, then
g is S-integrable. We shall now prove a similar statement for C+.

For a in SK0(RDefS), we shall write 1a := 1Supp(a).

5.8.1. Proposition. — Let S be a definable subassignment in GDefk and let f be
a function in C+(S[0, 0, r]). Write f =

∑
i ai ⊗ϕi, with ai in SK0(RDefS) and ϕi in

P+(S[0, 0, r]). Then f is S-integrable if and only every function 1ai
ϕi is S-integrable.

Proof. — Let f be a S-integrable function in C+(S[0, 0, r]). Write f =
∑

i ai ⊗
ϕi, with ai in SK0(RDefS) and ϕi in P+(S[0, 0, r]). Since, by Proposition 5.3.1,
C+(S[0, 0, r]) is isomorphic to SK0(RDefS) ⊗P0

+(S) P+(S[0, 0, r]), we may write f =∑
j bj ⊗ ψj , with bj in SK0(RDefS) and ψj S-integrable functions in P+(S[0, 0, r]).

We now use the degree function degL defined in 4.6. Recall that, for two functions
ϕ and ϕ′ in P+(S[0, 0, r]), degL(ϕ + ϕ′) = sup(degL(ϕ), degL(ϕ′)). Let us also
remark that if a belongs to P0

+(S) and ϕ to P+(S[0, 0, r]), the difference degL(aϕ)−
degL(1aϕ) may take only a finite number of distinct values. It then follows from the
relations defining the tensor product SK0(RDefS)⊗P0

+(S) P+(S[0, 0, r]) that there is

a constant C such that degL(1ai
ϕi) ≤ C + supj(degL(ψj)). From Proposition 4.6.2

we deduce that that every function 1ai
ϕi is S-integrable. The reverse implication

being clear, this concludes the proof.

5.8.2. Corollary. — Consider a morphism g : S → Λ in Defk. For every point λ
in Λ consider the fiber Sλ of g at λ. A function f in C+(S[0, 0, r]) is S-integrable if
and only if, for every point λ in Λ, the restriction fλ to C+(Sλ[0, 0, r]) is integrable.
Furthermore, if these conditions are satisfied, µSλ

(fλ) is equal to the restriction of
µS(f) to Sλ.

Proof. — The analogous result with C+ replaced by P+ being clear, the statement
follows directly from Proposition 5.8.1.

5.8.3. Proposition. — Let S be a definable subassignment in GDefk. Let f and g
be functions in C+(S[0, 0, r]). If f ≥ g and f is S-integrable, then g is S-integrable.

Proof. — We may write f = g+h with h in C+(S[0, 0, r]). We write g =
∑

j bj ⊗ψj ,

with bj in SK0(RDefS) and ψj in P+(S[0, 0, r]), and similarly h =
∑

j′ bj′ ⊗ ψj′.

Since f =
∑

j bj ⊗ ψj +
∑

j′ bj′ ⊗ ψj′, it follows from Proposition 5.8.1 that every
function 1bj

ψj is S-integrable, which concludes the proof.

We now can state the analogue of Proposition 4.8.2 (2).
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5.8.4. Proposition. — Let S be a definable subassignment in GDefk and let ϕ be
in C+(S×hZr). Write r = r1+r2 and identify hZr with hZr1×hZr2 . The function ϕ is
S-integrable if and only if as a function in C(S×hZr1 ×hZr2 ), it is S×hZr1 -integrable
and µS×h

Z
r1

(ϕ) is S-integrable. If these conditions hold then

µS(µS×h
Z

r1
(ϕ)) = µS(ϕ).

Proof. — If ϕ is S × hZr1 -integrable, we may, as in the proof of Proposition 5.8.1,
write ϕ =

∑
i ai ⊗ ϕi with ai in SK0(RDefS) and ϕi in P+(S × hZr), S × hZr1 -

integrable functions. Replacing ϕi by 1ai
ϕi we may even assume ϕi = 1ai

ϕi.
Hence µS×h

Z
r1

(ϕ) =
∑

i ai ⊗ µS×h
Z

r1
(ϕi). If µS×h

Z
r1

(ϕ) is S-integrable, it fol-
lows from Proposition 5.8.1 that the functions 1ai

µS×h
Z

r1
(ϕi) = µS×h

Z
r1

(ϕi) are
all S-integrable. One then deduces from Proposition 4.8.2 (2) that the functions
ϕi are all S-integrable, hence ϕ is S-integrable. The reverse implication is already
known (Proposition 5.7.2), and the last statement also follows from Proposition 4.8.2
(2).

5.8.5. Proposition. — Let S be a definable subassignmentin GDefk and denote
by π the projections π : S[0, n, r] → S[0, 0, r] and π : S[0, n, 0] → S[0, 0, 0]. Let ϕ be
a function in C+(S[0, n, r]). Then ϕ is S[0, n, 0]-integrable if and only if the function
π!(ϕ) in C+(S[0, 0, r]) is S-integrable. If these conditions hold, then

π!(µS[0,n,0](ϕ)) = µS(π!(ϕ)).

Proof. — Let ϕ be a function in C+(S[0, n, r]). We may write ϕ =
∑

i ai⊗π
∗ϕi with

ai in SK0(RDefS[0,n,0]) and ϕi in P+(S[0, 0, r]). Indeed, it follows from the second
part of Theorem 2.1.1 that the canonical morphism

P0
+(S[0, n, 0]) ⊗P0

+(S) P
0
+(S[0, 0, r]) → P0

+(S[0, n, r])

is an isomorphism, from which we deduce a canonical isomorphism

C+(S[0, n, r]) ≃ SK0(RDefS[0,n,0]) ⊗P0
+(S) P+(S[0, 0, r])

by Propositions 5.2.1 and 5.3.1. We have π!(ϕ) =
∑

i π!(ai) ⊗ ϕi. The key remark
is that 1ai

π∗(ϕi) is S[0, n, 0]-integrable if and only if 1π!ai
ϕi is S-integrable, since

integrability is defined by a pointwise condition. Hence it follows from Proposition
5.8.1, that ϕ is S[0, n, 0]-integrable if and only if π!(ϕ) is S-integrable. Let us as-
sume these conditions hold, so that, by Proposition 5.8.1, each 1ai

ϕi is S-integrable.
We assume ϕi = 1ai

ϕi for every i. Since µS[0,n,0](π
∗(ϕi)) = π∗(µS(ϕi)), we get

µS[0,n,0](ϕ) =
∑

i ai⊗π
∗(µS(ϕi)), hence by the projection formula (5.6.1), we deduce

π!µS[0,n,0](ϕ) =
∑

i π!(ai) ⊗ µS(ϕi) = µS(π!(ϕ)).

Let λ : S[0, n, r] → S[0, n′, r′] be a morphism in DefS. Let ϕ be a function
in C(S[0, n, r]), resp. in C+(S[0, n, r]). Assume ϕ = 1Zϕ with Z a definable sub-
assignment of S[0, n, r] on which λ is injective. Thus λ restricts to an isomorphism λ′

between Z and Z ′ := λ(Z). We define λ+(ϕ) in C(S[0, n′, r′]), resp. in C+(S[0, n′, r′])
as [i′!(λ

′−1)∗i∗](ϕ), where i and i′ denote respectively the inclusions of Z and Z ′ in
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S[0, n, r] and S[0, n′, r′]. Clearly this definition does not depend on the choice of Z
and is compatible with the definition of λ+ in section 5.7 when n = n′ = 0.

5.8.6. Proposition. — Let λ : S[0, n, r] → S[0, n′, r′] be a morphism in DefS. Let
ϕ be a function in C+(S[0, n, r]) such that ϕ = 1Zϕ with Z a definable subassignment
of S[0, n, r] on which λ is injective. Then ϕ is S[0, n, 0]-integrable if and only if
λ+(ϕ) is S[0, n′, 0]-integrable and if this is the case then

(5.8.1) p!(µS[0,n,0](ϕ)) = p′!(µS[0,n′,0](λ+(ϕ))),

with p : S[0, n, 0] → S and p′ : S[0, n′, 0] → S the projections.

Proof. — In the case where n = n′ and λ is the identity on the An
k-factor, that is,

λ is of the form (s, ξ, α) 7→ (s, ξ, g(s, α)), with s variable on the S-factor, ξ on the
An

k -factor and α on the Zr-factor, the statement follows directly from Proposition
5.7.3. Assume now r = r′ and λ is the identity on the Zr-factor, that is, λ is of
the form (s, ξ, α) 7→ (s, f(s, ξ), α). Let ϕ be a function in C+(S[0, n, r]) such that
ϕ = 1Zϕ with Z a definable subassignment of S[0, n, r] on which λ is injective. As
in the proof of Proposition 5.8.5 we may write

(5.8.2) ϕ =
∑

i

ai ⊗ π∗ϕi

with ai in SK0(RDefS[0,n,0]) and ϕi in P+(S[0, 0, r]). We obvious notations,

(5.8.3) λ+(ϕ) =
∑

i

f!(ai) ⊗ π∗ϕi.

If ϕ is S[0, n, 0]-integrable, we may assume all the functions are all S-integrable,
hence λ+(ϕ) is S[0, n′, 0]-integrable. For the reverse implication, note that ϕ =

λ̃+(λ+(ϕ)) for any morphism λ̃ : S[0, n′, r′] → S[0, n, r] which restricts to the inverse
of λ′ on Z ′. Relation (5.8.1) then follows from (5.8.2) and (5.8.3).

Note that if the statement of Proposition 5.8.6 holds for two composable mor-
phisms λ1 and λ2, it still holds for λ2 ◦ λ1. In particular it follows from the
previous discussion that the statement we want to prove holds for λ of the form
(s, ξ, α) 7→ (s, f(s, ξ), g(s, α)). Now consider the case of a general morphism λ :
S[0, n, r] → S[0, n′, r′]. Let ϕ be a function in C+(S[0, n, r]) such that ϕ = 1Zϕ with
Z a definable subassignment of S[0, n, r] on which λ is injective. By the second part
of Theorem 2.1.1 there is a finite partition of Z into definable subassignments Zi,
such that the restriction of λ to each Zi is of the form (s, ξ, α) 7→ (s, fi(s, ξ), gi(s, α)).
Since λ+(1Zi

ϕ) only depends on the restriction of λ to Zi, it follows that the state-
ment we want to prove holds for 1Zi

ϕ, hence also for ϕ =
∑

i 1Zi
ϕ.

6. Constructible motivic Functions

6.1. Dimension and relative dimension. — Let Z be in Defk and let ϕ be
in C(Z), resp. C+(Z). We say ϕ is of K-dimension ≤ d if it may be written as a
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finite sum ϕ =
∑
λi1Zi

in C(Z), resp. in C+(Z), with KdimZi ≤ d. We say ϕ is of
K-dimension d if it is of K-dimension ≤ d and not of K-dimension ≤ d− 1.

More generally, if Z → S is in DefS for some S and ϕ in C(Z), resp. in C+(Z),
we say that ϕ is of dimension ≤ d rel. the projection Z → S if it may be written as
a finite sum ϕ =

∑
λi1Zi

in C(Z), resp. in C+(Z), with Zi of relative dimension ≤ d
rel. the projection Z → S (as in section 3.4). We also use the notion equidimensional
of dimension d rel. the projection Z → S, for ϕ in C(Z) or in C+(Z).

6.2. Constructible motivic Functions. — Let Z be a definable subassignment
in GDefk. We denote by C≤d(Z), resp. C≤d

+ (Z), the subgroup, resp. subsemigroup,
of elements of C(Z), resp. C+(Z), of K-dimension ≤ d. We denote by Cd(Z) the
quotient

Cd(Z) := C≤d(Z)/C≤d−1(Z)

and we set

C(Z) =
⊕

d≥0

Cd(Z).

It is a graded abelian group. Similarly, we denote by Cd
+(Z) the quotient

Cd(Z) := C≤d
+ (Z)/C≤d−1

+ (Z)

and we consider the graded abelian semigroup

C+(Z) =
⊕

d≥0

Cd
+(Z).

An element in C(Z), resp. in C+(Z), will be called a constructible motivic
Function, resp. a positive constructible motivic Function. It is an equivalence class
of constructible motivic functions, resp. of positive constructible motivic functions.

If ϕ is of K-dimension d, we denote by [ϕ] the class of ϕ in Cd(Z) or in Cd
+(Z).

Let us remark that, since C≤d(Z) is an ideal in C(Z), the product on C(Z) induces
a C(Z)-module structure on C(Z). Similarly the product on C+(Z) induces a C+(Z)-
module structure on C+(Z).

6.3. — More generally, let us fix a definable subassignment S in GDefk and con-
sider the category GDefS. For Z in GDefS, we define C≤d(Z → S) and C≤d

+ (Z → S)
as in 6.2, but by replacing K-dimension by relative K-dimension with respect to S.

We set Cd(Z → S) := C≤d(Z → S)/C≤d−1(Z → S) and

C(Z → S) =
⊕

d≥0

Cd(Z → S).

One defines similarly Cd
+(Z → S) and C+(Z → S). Also if ϕ is of relative dimension

d, we denote by [ϕ] the class of ϕ in Cd(Z → S) or in Cd
+(Z → S). Let us remark

that C(id : S → S) = C(S) and that C(Z → hSpec k) = C(Z) and similarly for C+.
Let f be a Function in C(Z → S). For every point s in S, f naturally restricts

to a Function fs in C(Zs), where Zs denotes the fiber of Z at s.
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If Z1 and Z2 are disjoint definable subassignment of some definable subassignment
in GDefS, then (5.4.1) induces isomorphisms

C(Z1 ∪ Z2 → S) ≃ C(Z1 → S) ⊕ C(Z2 → S)

and

C+(Z1 ∪ Z2 → S) ≃ C+(Z1 → S) ⊕ C+(Z2 → S).

Also, (5.4.2) induces products

C(Z1 → S) ⊗C(S) C(Z2 → S) → C(Z1 ×S Z2 → S)

and

C+(Z1 → S) ⊗C+(S) C+(Z2 → S) → C+(Z1 ×S Z2 → S).

7. Cell decomposition

In this section we shall state some variants and mild generalizations of the cell
decomposition Theorem of [24] in a form suitable for our needs. Our terminology
concerning cells differs slightly from that used in [24].

7.1. Cells. — Let C be a definable subassigment of S where S is in Defk. Let α,
ξ, and c be definable morphisms α : C → Z, ξ : C → hGm,k

, and c : C → h[1, 0, 0].
The cell ZC,α,ξ,c with basis C, order α, center c, and angular component ξ is the
definable subassignment of S[1, 0, 0] defined by y ∈ C, ord(z − c(y)) = α(y), and
ac(z − c(y)) = ξ(y), where y ∈ S and z ∈ h[1, 0, 0]. Similarly, if c is a definable
morphism c : C → h[1, 0, 0], we define the cell ZC,c with center c and basis C as the
definable subassignment of S[1, 0, 0] defined by y ∈ C and z = c(y).

More generally, a definable subassignment Z of S[1, 0, 0] will be called a 1-cell,
resp. a 0-cell, if there exists a definable isomorphism

λ : Z → ZC = ZC,α,ξ,c ⊂ S[1, s, r],

resp. a definable isomorphism

λ : Z → ZC = ZC,c ⊂ S[1, s, 0],

for some s, r ≥ 0 and some 1-cell ZC,α,ξ,c, resp. 0-cell ZC,c, such that the morphism
π ◦ λ, with π the projection on the S[1, 0, 0]-factor, is the identity on Z.

We shall call the data (λ, ZC,α,ξ,c), resp. (λ, ZC,c), sometimes written for short
(λ, ZC), a presentation of the cell Z.

One should note that λ∗ induces a canonical bijection between C(ZC) and C(Z).

7.1.1. Remark. — Cells as defined in [24] fall within our definition, but not the
other way around. Also, any presentation as in [24] of a cell as in [24] can be
adapted to a presentation in the above sense; for a 0-cell this is trivial, and for a
1-cell this can be done by adding one more Ord-variable.
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7.2. Cell decomposition. — The following variant of the Denef-Pas cell decom-
position Theorem [24] will play a fundamental role in the present paper:

7.2.1. Theorem. — Let X be a definable subassignment of S[1, 0, 0] with S in
Defk.

(1) The subassigment X is a finite disjoint union of cells.
(2) For every ϕ in C(X) there exists a finite partition of X into cells Zi with

presentation (λi, ZCi
), such that ϕ|Zi

= λ∗i p
∗
i (ψi), with ψi in C(Ci), with pi :

ZCi
→ Ci the projection. Similar statements hold for ϕ in C+(X), in P(X), in

P+(X), in K0(RDefX), or in SK0(RDefX).

We shall call a finite partition of X into cells Zi as in Theorem 7.2.1(1),
resp. 7.2.1(2), for a function ϕ, a cell decomposition of X, resp. a cell decomposition
of X adapted to ϕ.

Proof of Theorem 7.2.1. — Clearly (2) implies (1). We show how (2) follows from
the cell decomposition Theorem. 3.2 of [24]. To fix notation, let S be a definable
subassignment of h[m,n, r].

First we let ϕ be in C(X). Write ϕ as
∑

i ai ⊗ ϕi with ai ∈ K0(RDefX) and
ϕi ∈ P(X). Let f1, . . . , ft be all the polynomials in the Val-variables occurring
in the formulas describing the data X, ai, and ϕi

(5), where we may suppose that
these formulas do not contain quantifiers over the valued field sort. Apply the
cell decomposition Theorem 3.2 of [24] to the polynomials fi. Using remark 7.1.1,
we see that this yields a partition of h[m + 1, 0, 0] into cells Zi with presentations
λi : Zi → ZCi

and with some center ci. Write x = (x1, . . . , xm+1) for the Val-
variables, ξ for the Res-variables and z for the Ord-variables on ZCi

.
If Zi is a 1-cell, we may suppose that for (x, ξ, z) in ZCi

we have ord(xm+1−ci) = z1
and ac(xm+1 − ci) = ξ1, by changing the presentation of Zi if necessary (that is, by
adding more Ord-variables and Res-variables). By Theorem 3.2 of [24] and changing
the presentation as before if necessary, we may also assume that

ordfj(x) = zkj
,

acfj(x) = ξlj ,

for (x, ξ, z) in ZCi
, where the indices kj and lj only depend on j and i.

Since the condition f(x) = 0 is equivalent to ac(f(x)) = 0, we may suppose
that in the formulas describing X, ai, and ϕi, the only terms involving Val-variables
are of the forms ordfj(x) or acfj(x). Combining this with the above description of
ordfj(x) and acfj(x) one can then easily construct a partition of X into cells and
for each such cell a constructible functions ψ which satisfies the requirements of the
theorem. If ϕ is in C+(X), resp. in P(X), P+(X), K0(RDefX), or in SK0(RDefX),
the same argument works, since clearly this construction preserves positivity.

(5)By this we mean that we take the defining formulas for X and, for each i, of subassignments in
RDefX representing ai and the defining formulas for all definable morphisms α : X → Z occurring
in ϕi as a sum of product of functions of the form L

α and α.
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7.2.2. Example. — A cell decomposition for hA1
k((t))

: take the disjoint union of

the 0-cell {0} and the 1-cell hA1
k((t))

\ {0} with presentation (λ, Z ′) with λ(z) =

(z, ac(z), ord(z)) and Z ′ defined by ac(z) = ξ, ord(z) = i, ξ 6= 0.

7.2.3. Lemma. — Let ϕ be in C+(S[1, 0, 0]) for some S in Defk and let Z ⊂
S[1, 0, 0] be a 1-cell which is adapted to ϕ|Z and which has a presentation λ : Z →
ZC = ZC,α,ξ,c. There is some ψ ∈ C+(C) with λ∗p∗(ψ) = ϕ|Z, where p : ZC → C
is the projection. Let CG be any nonempty definable subassignment of C and let
αG, ξG, cG be the restrictions of α, ξ, c to CG. Then, the subassignment ZG of Z given
by p ◦ λ(x) ∈ CG is a 1-cell with presentation λG : ZG → ZCG,αG,ξG,cG

, where λG is
the restriction of λ to ZG. Moreover, ZG is adapted to ϕ|ZG

and ϕ|ZG
= λ∗Gp

∗
G(ψG),

where ψG is the restriction of ψ to CG and pG the restriction of p to ZG. A similar
statement holds for 0-cells.

Proof. — Clear.

7.3. Refinements. — Let Z and Z ′ be cells in S[1, 0, 0] for some S in Defk, with
presentation (λ, ZC) and (λ′, Z ′

C′) respectively. Assume that Z ⊂ Z ′. We call Z a
refinement of Z ′ and we write Z ≺ Z ′ if there exists a definable morphism g : C → C ′

such that g◦p◦λ = p′◦λ′|Z , where p : ZC → C and p′ : Z ′
C′ → C ′ are the projections.

Clearly this defines a partial order on the set of cells in S[1, 0, 0].
Let X be a definable subassignment of S[1, 0, 0] and let P = (Zi)i∈I and P ′ =

(Z ′
j)j∈J be two cell decompositions of X. We say P is a refinement of P ′ and write

P ≺ P ′ if for every j in J there exists i(j) in I such that Zi(j) ≺ Z ′
j .

7.3.1. Proposition. — Let X be a definable subassignment of S[1, 0, 0] with S in
Defk and let ϕi be a function in C(X) for i = 1, 2. Let Pi be a cell decomposition
of X adapted to ϕi for i = 1, 2. Then there exists a cell decomposition P of X such
that P ≺ Pi for i = 1, 2 which is adapted to both ϕ1 and ϕ2. Similar statements
hold for ϕi in C+(X), in P(X), in P+(X), in K0(RDefX), or in SK0(RDefX).

Proof. — It follows the definitions that if P is a refinement of P1 then P is automat-
ically adapted to ϕ1. Thus we only have to show that there is a common refinement
P of P1 and P2. Choose a cell Zi in Pi with presentation (λi, ZCi

) for i = 1, 2. It
is enough to prove that one can partition Z1 ∩ Z2 into cells which are a refinement
of both Z1 and Z2. To fix notation we write Ci ⊂ S[0, si, ri] for some si, ri ≥ 0, and
we consider the projection

π2 : S[1, s2, r2] → h[0, s2, r2].

Let g be the definable morphism

g : Z1 ∩ Z2 → S[1, s1 + s2, r1 + r2] : x 7→ (λ1(x), π2 ◦ λ2(x)).

Since λ1 is a definable isomorphism, g is also a definable isomorphism onto some
definable subassignment Z. Now apply the cell decomposition theorem 7.2.1 (1) to
Z and the Proposition follows by construction.
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7.4. Bicells. — We will have, for technical reasons, to consider bicells, that is,
cells with 2 special variables.

Fix S in Defk. Let C be a definable subassigment of S.
Let α and β be definable morphisms C → Z, ξ and η be definable morphisms

C → hGm,k
, c be a definable morphism C → h[1, 0, 0] and d be a definable morphism

C[1, 0, 0] → h[1, 0, 0]. We further assume that either, for every point y = (y0, K) in
C, the function u 7→ d(y, u) constant on hA1

K((t))
or, for every point y = (y0, K) in

C, it is injective on hA1
K((t))

.

The bicell ZC,α,β,ξ,η,c,d with basis C is the definable subassignment of S[2, 0, 0]
defined by

y ∈ C

ord(z − d(y, u)) = α(y)

ac(z − d(y, u)) = ξ(y)

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y),

where y denotes the S-variable, z the first A1
k((t))-variable and u the second A1

k((t))-
variable.

Similarly, we define the bicell Z ′
C,β,η,c,d as the definable subassignment of S[2, 0, 0]

defined by

y ∈ C

z = d(y, u)

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y),

the bicell Z ′′
C,α,ξ,c,d as the definable subassignment defined by

y ∈ C

ord(z − d(y, u)) = α(y)

ac(z − d(y, u)) = ξ(y)

u = c(y),

and the bicell Z ′′′
C,c,d as the definable subassignment defined by

y ∈ C

z = d(y, u)

u = c(y).

Now we can define bicells similarly to 7.1, except we have 4 types of bicells instead
of 2 types of cells.
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A definable subassignment Z of [2, 0, 0] will be called a (1, 1)-bicell (resp. a
(0, 1)-bicell, a (1, 0)-bicell, a (0, 0)-bicell), if there exists a definable morphism

λ : S[2, 0, 0] −→ S[2, s, i],

and a bicell ZC,α,β,ξ,η,c,d (resp. Z ′
C,β,η,c,d, Z

′′
C,α,ξ,c,d, Z

′′′
C,c,d) with basis C which is a

definable subassignment of S[0, s, i], such that:
- the morphism π ◦λ, with π the projection on the S[2, 0, 0]-factor restricts to the

identity on Z;
- λ(Z) is equal to ZC,α,β,ξ,η,c,d (resp. Z ′

C,β,η,c,d, Z
′′
C,α,ξ,d, Z

′′′
C,c,d).

We shall call the data (λ, ZC) with ZC of one of the above forms a presentation

of the cell Z and we shall write λ̃ for the restriction of λ to Z.
We define similarly to 7.2 bicell decompositions of a definable subassignment Z

of S[2, 0, 0] and bicell decompositions of Z adapted to a given function ϕ in C(Z).
The following statement is an easy consequence of Theorem 7.2.1:

7.4.1. Proposition. — (1) Every definable subassignment Z of S[2, 0, 0] admits
a bicell decomposition.

(2) For every ϕ in C(Z) there exists a bicell decomposition of Z adapted to the
function ϕ, namely, there exists a finite partition of Z into bicells Zi with
presentation (λi, ZCi

), such that ϕ|Zi
= λ̃∗i p

∗
i (ψi), with ψi in C(Ci) and pi :

ZCi
→ Ci the projection. Similar statements hold for ϕ in C+(Z), in P(Z), in

P+(Z), in K0(RDefZ), or in SK0(RDefZ).

Proof. — First apply Theorem 7.2.1 to obtain a partition of Z into cells, adapted
to ϕ. Then apply Theorem 7.2.1 to each basis C of the occurring cells and the
functions ψ in C(C) corresponding to ϕ as in Theorem 7.2.1 (2). We still have to get
the condition that either, for every point y = (y0, K) in C, the function u 7→ d(y, u)
constant on hA1

K((t))
or, for every point y = (y0, K) in C, it is injective on hA1

K((t))
.

To achieve that, it is enough to perform cell decomposition of the graph of d with
respect to the u-variable ; after adding new auxiliary parameters in the Res and
Ord-sort the function d will become locally constant as a function of u on 1-cells,
and injective as a function of u on 0-cells. The Proposition then follows from the
following Lemma.

7.4.2. Lemma. — Let X be in Defk and consider a definable morphism
f : X[1, 0, 0] → h[1, 0, 0]. Assume that for every point x = (x0, K) in X the
function u 7→ f(x, u) is locally constant. on hA1

K((t))
. Let Y be the subassignment of

X[1, 0, 0] given by
∃u f(x, u) = y,

where y runs over h[1, 0, 0]. Then, for every point x in X, the number of points of
Yx, the fiber at x of the projection Y → X, is finite and bounded uniformly in x.

Proof. — Let us apply cell decomposition to Y . We shall prove that cells in this
decomposition of Y are 0-cells, from which the Lemma follows. Suppose by contra-
diction that there is a 1-cell Z in this decomposition of Y . Apply cell decomposition
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to Γ(f) ∩ Z[1, 0, 0] with respect to the u-variable, where Γ(f) is the graph of f and
write πY : Γ(f) → Y and πX : Γ(f) → X for the projections. Because f is locally
constant as a function in u and because Z is a 1-cell, there must be a 1-cell Z ′ in
this decomposition such that πY (Z ′) is not contained in any finite union of 0-cells.
Then, for every (x, y) ∈ Z ∩ πY (Z ′), the fiber Z ′

xy of the map πY |Z′ at (x, y) is a
1-cell. Moreover, for different points (x, y) = ((x0, y0), K), (x, y′) = ((x0, y

′
0), K) in

Z ∩πY (Z ′) with the same residue field K, Z ′
xy and Z ′

xy′ are disjoint by construction.
This yields a contradiction. Indeed, the center of the cell Z ′ being piecewise ana-
lytic by Theorem 3.2.1 (i) , we may assume it is in fact K((t))-analytic at (x, y) and
therefore Z ′

xy and Z ′
xy′ cannot be disjoint as soon as ord(y′0−y0) is large enough.

7.5. Analyticity and cell decomposition. — We consider the expansion L∗
DP

of LDP which is obtained by adding the following function symbols for each integer
n > 0:

(1) The symbol −1 : Val → Val for the field inverse x 7→ x−1 if x is nonzero
extended by 0−1 = 0.

(2) The symbol (·, ·)1/n : Val × Res → Val for the function sending (xn, ξ) to
the (unique) n-th root of xn with angular component ξ if this exists and to 0
otherwise.

(3) The symbol hn : Valn ×Res → Val for the function sending (a0, . . . , an−1, ξ) to
the (unique) element y satisfying ac(y) = ξ and yn +

∑n−1
i=0 aiy

i = 0 whenever
ord(ai) ≥ 0, ξn +

∑
i∈I ac(ai)ξ

i = 0 and nξn−1 +
∑

i∈I iac(ai)ξ
i−1 6= 0 for

I = {i | ord(ai) = 0} and to 0 otherwise.

7.5.1. Definition. — Let X be definable subassignment of h[m,n, r] for some
m,n, r ≥ 0. A definable morphism f : X → h[1, 0, 0] is called a normal function if
there exists a definable isomorphism g : X 7→ X ′ ⊂ h[m,n + n′, r + r′] over X, a
finite partition of X into definable subassignments Xi, and L∗

DP-terms fi in variables
running over X ′ such that f|Xi

= fi ◦ g|Xi
for each i.

The proof of the following Lemma will be contained in [4] and can be found by
the reader as an exercise.

7.5.2. Lemma. — Let Z be a 1-cell with presentation id : Z → Z = ZC,α,ξ,c.
Suppose that c = 0 on C and let f(x, t) =

∑n
i=0 ai(x)t

i be a polynomial in t with
coefficients which are L∗

DP-terms in x and where x runs over C, t over h[1, 0, 0].
Suppose that

min
i

(ordait
i) = ordai0t

i0 with i0 ≥ 1,

ordf ′(x, t) = ordai0t
i0−1,

and that d(x) : C → h[1, 0, 0] is a definable function whose graph lies inside Z and
which satisfies f(x, d(x)) = 0 for each x ∈ C. Then the function d is normal.

The following is a fundamental structure result for definable functions with values
in the valued field.
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7.5.3. Theorem. — Let X be a definable subassignment of h[m,n, r] for some
m,n, r ≥ 0 and let f : X → h[1, 0, 0] be a definable morphism. Then f is a normal
function.

Proof. — Let ϕ be a formula describing the graph of f and suppose that ϕ is of
the form (3.3.2) as in the proof of Theorem 3.3.1. Let pj be all polynomials in
the Val-sort which appear in ϕ. With exactly the same proof as the proof of the
Denef-Pas cell decomposition in [24] and with Lemma 7.5.2 instead of Lemma 3.7
of [24], where one replaces the words strongly definable function by L∗

DP-term, one
shows that there exists a cell decomposition of X[1, 0, 0] adapted to ord(pj) for each
j such that the centers ci of the occurring cells Zi are L∗

DP-terms. For each cell Zi,
let Z ′

i be λ−1
i (Graph(ci)) ∩ Graph(f), where λi is the representation of Zi. Clearly

each Z ′
i is a 0-cell with presentation the restriction of λi to Z ′

i. It follows from the
description (3.3.2) of ϕ that for each point x ∈ X the point f(x) is a zero of at least
one of the polynomials pi(x, ·), and by cell decomposition that at least one of the
centers of the cells adapted to pi gives this zero. The cells Z ′

i form a partition of the
graph of f and one concludes that f is a normal function.

Let K be a field. A subset B of K((t)) of the form c + tαK[[t]] is called a ball
of volume L−α. A function f : B → K is called strictly analytic if there exists a
power series ϕ :=

∑
i∈N aix

i in K((t))[[x]] converging on tαK[[t]], that is such that
limi7→∞(ordai + iα) = ∞, such that f(c+y) = ϕ(y) for every y in tαK[[t]]. Note that
this definition is independent from the choice of the center c and that if f is strictly
analytic on B, its restriction to any ball contained in B is also strictly analytic.

7.5.4. Proposition. — Let X be in Defk, Z be a definable subassignment
of X[1, 0, 0] and let f : X[1, 0, 0] → h[1, 0, 0] be a definable morphism. Let
Z → h[1, 0, 0] be the projection. Then there exists a cell decomposition of Z into
cells Zi, such that the following conditions hold for each 1-cell Zi with presentation
λi : Zi → ZCi

= ZCi,αi,ξi,ci
and with projection pi : ZCi

→ Ci:

(1) For each ξ ∈ Ci either for all K ∈ Fieldk(ξ) the set π(p−1
i (ξ))(K) is empty

or it is a ball of volume L−αi(ξ) independent of K and the restriction of π to
p−1

i (ξ) → π(p−1
i (ξ)) is a definable isomorphism πi,ξ.

(2) For every ξ ∈ Ci and every K ∈ Fieldk(ξ), the function f|p−1
i (ξ)(K)◦π

−1
i,ξ is strictly

analytic on π(p−1
i (ξ))(K) (when non empty).

Proof. — Statement (1) holds automatically if αi is contained in the additional
parameters of the presentation λi. By Theorem 7.5.3 we may suppose that Z is a
1-cell with presentation λ : Z → ZC and projection p : ZC → C, and that f is given
by a L∗

DP-term. We shall now prove statement (2) by induction on the complexity
of the term f . Fix ξ0 in C. The case where π(p−1

i (ξ0))(K) is empty being clear, we
may assume after translation and homothety that π(p−1

i (ξ0))(K) is in fact the ball
K[[t]]. Consider a term a−1 with a a term for which the statement already holds.
By cell decomposition we may assume that ord(a) and ac(a) only depend on ξ0. We
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may also assume a is non zero. Let us denote by ã the function induced by a on the
ball π(p−1

i (ξ0))(K). We may write

(7.5.1) ã = tαη(1 +
∑

j≥1

Pj(x)t
j),

with α in Z, η non zero in K, and Pj polynomials in K[x]. We use here the fact
that K is infinite. Note also that a series in K[[t]][[x]] converges on the ball K[[t]] if
and only if it lies in K[x][[t]]. Since 1 +

∑
j≥1 Pj(x)t

j is a unit in the ring K[x][[t]],

the result follows in this case. Similarly, consider a term (a, ξ)1/n, with a a term for
which the statement already holds. As before we may assume the function ã induced
by a on the ball π(p−1

i (ξ0))(K) is of the form (7.5.1). Furthermore we may assume
α lies in nZ and η = ξn. The result follows since the series 1 +

∑
j≥1 Pj(x)t

j has

a unique n-th root of the form 1 +
∑

j≥1Qj(x)t
j in the ring K[x][[t]]. Now assume

the term is hn(a1, . . . , an−1, ξ) where ai, ξ are terms for which the statement holds
and ξ0 ∈ X we may suppose by cell decomposition that ξ, ord(ai) and ac(ai) only
depend on ξ0. Denoting by ãi the function induced by ai on the ball π(p−1

i (ξ0))(K),
we may write

(7.5.2) ãi = tαiηi(1 +
∑

j≥1

Pi,j(x)t
j),

with Pi,j in K[x]. We may assume that αi ≥ 0 for all i, ξn +
∑

i∈I ηiξ
i = 0 and

nξn−1 +
∑

i∈I iηiξ
i−1 6= 0, where I denotes the set of i’s with αi = 0. By the usual

proof of Hensel’s Lemma by successive approximations modulo higher powers of
t, one gets that there exists universal polynomials Qj in K[xi,ℓ] 0≤i≤n−1

1≤ℓ≤j

such that

hn(ã1, . . . , ãn−1, ξ) is equal to

(7.5.3) hn(ã1, . . . , ãn−1, ξ) = ξ +
∑

j≥1

Qj(Pi,ℓ(x))t
j ,

from which the assertion follows. This concludes the proof, the result being clear
for the remaining type of terms.

7.5.5. Lemma. — Let f =
∑

i aix
i ∈ K((t))[[x]] be a formal power series con-

verging on tβK[[t]] with K a field of characteristic zero, β ∈ Z. Suppose that a0 = 0
and that there exists α in Z such that ordf ′(x) = α for every x in tβK[[t]], where
f ′ is the derivative of f . Then the image of f is contained in tα+βK[[t]] and cannot
be contained in a set of the form c + tα+β+1K[[t]] for some c ∈ K((t)). For every
x0 ∈ tβK[[t]], the restriction of f to x0 + tβ+1K[[t]] is a bianalytic bijection onto
f(x0) + tα+β+1K[[t]], whose inverse is also strictly analytic.

Proof. — By replacing x by x/tβ we may suppose that β = 0. First we prove
that orda1 = α and ordai ≥ α. Let I be {i | ordai = min(ordaj)j}, let p be the
polynomial

∑
i∈I aix

i and let p′ be its derivative. If p′ = a1 this is trivial. Suppose
that the degree of p′ is > 0. Since K is infinite there exists for any b ∈ K an
element y0 ∈ K such that

∑
i∈I,i>0 iac(ai)y

i−1
0 6= b. By taking b = 0, it follows that
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ordai = α for i ∈ I and 1 ∈ I since otherwise ord(f ′(0)) > α. Fix c ∈ K((t)). By
taking b = ac(c) if ord(c) = α and b = 0 otherwise it follows that the image of f
cannot be contained in the set c + tα+1K[[t]].

Now fix x0 ∈ K. It is clear that f maps x0 + tK[[t]] into f(x0) + tα+1K[[t]]. The
statement about the bianaliticity is well known and follows from the inverse function
theorem stated in [21], Corollary 2.2.1(ii).

8. Volume forms and Jacobians

8.1. Differential forms on definable subassignments. — Let W be of the
form W = X × X × Zr with X a k((t))-variety and X a k-variety. Let h be a
definable subassignment of hW . We denote by A(h) the ring of definable functions
h → hA1

k((t))
on h. We want to define, for every integer i in N, an A(h)-module

Ωi(h) of definable i-forms on h.
Assume first that Y is a k((t))-variety. We consider the sheaf Ωi

Y of degree i
algebraic differential forms on Y . It is the i-th exterior product of the sheaf Ω1

Y of
Kähler differentials.

We denote by AY the Zariski sheaf associated to the presheaf U 7→ A(hU) on Y .
Note that both Ωi

Y and AY are sheaves of OY(= Ω0
Y)-modules, so we can consider

the sheaf
Ωi

hY
:= AY ⊗OY

Ωi
Y

of definable degree i differential forms on Y , and its module of global sections

Ωi(hY) := Ωi
hY

(Y).

Note also that, in general, Ωi(hY) is much bigger than AY(Y) ⊗OY (Y) Ωi
Y(Y).

Now we consider the subvariety Y of X which is the Zariski closure of the image
of h by the projection π : hW → hX . Composition with π endowes A(h) with the
structure of an A(hY)-algebra, so we can set

Ωi(h) := A(h) ⊗A(hY ) Ωi(hY).

Note that Ω0(h) = A(h).
Let d be the K-dimension of h. We denote by A<(h) the ideal of definable func-

tions on h vanishing on the complement of a definable subassignment of dimension
< d, and we set

Ω̃d(h) := A(h) ⊗A(hY ) Ωd(hY)/A<(h) ⊗A(hY ) Ωd(hY).

8.2. Volume forms on definable subassignments. — Let h be a definable
subassignment of hW , W = X ×X × Zr. Assume h is of K-dimension d. There is
a canonical morphism of abelian groups

λ : A(h)/A<(h) −→ Cd
+(h)

sending the class of a function f to the class of L−ordf , with the convention L−∞ = 0.
We now define the space |Ω̃|+(h) of definable positive volume forms on h as the
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quotient of the free abelian semi-group on symbols (ω, g), with ω in Ω̃d(h) and g in
Cd

+(h) by the relations:

(fω, g) = (ω, λ(f)g)

(ω, g + g′) = (ω, g) + (ω, g′)

(ω, 0) = 0.

We shall write g|ω| for the class of (ω, g), so that g|fω| = gL−ordf |ω|. In particular,
if ω is a differential form in Ω̃d(h) (or in Ωd(h)), we shall denote by |ω| the class of

(ω, 1) in |Ω̃|+(h). If h′ is a definable subassignment of h, there is a natural restriction
morphism |Ω̃|+(h) → |Ω̃|+(h′). When h′ is of K-dimension d, it is induced by
restriction of differential forms and Functions. When h′ is of K-dimension < d, we
define it to be the zero morphism.

Note that |Ω̃|+(h) has a natural structure of Cd
+(h)-module. We shall say an

element |ω| with ω in Ω̃d(h) is a gauge form, if it is a generator of this Cd
+(h)-

module. Gauge forms always exist, since, for Y a k((t))-variety of dimension d, the
sheaf Ωd

Y is locally free of rank one away from the singular locus.

Replacing Cd
+(h) by Cd(h), one define similarly the Cd(h)-module |Ω̃|(h).

Let f : h′ → h be a definable morphism between two definable subassignments.
Assume h and h′ are both of K-dimension d and that the fibers of f all have K-
dimension 0. Under these assumptions, there is a natural pullback morphism

(8.2.1) f ∗ : |Ω̃|+(h) −→ |Ω̃|+(h′).

Indeed, if ω is a degree d differential form in Ωd(h), one may try to define, in the
standard way its pullback f ∗ω on h′. Since this involves taking differentials of f ,
it will in general not be defined on the whole of h′ but, cf. 3.2.1 (iii), only on the
complement of a definable subassignment of dimension < d. So, we get in this way
a pullback f ∗ : Ω̃d(h) → Ω̃d(h′). On the other hand, pullback of functions induces,
under our assumptions, a morphism f ∗ : Cd

+(h) → Cd
+(h′), so we may define the

morphism (8.2.1) by sending the class of (ω, g) to the class of (f ∗(ω), f ∗(g)).

8.3. Canonical volume forms. — Let h be a definable subassignment of
h[m,n, r] of K-dimension d. We denote by x1, . . . , xm the coordinates on Am

k((t))

and we consider the d-forms ωI := dxi1 ∧ · · · ∧ dxid for I = {i1, . . . , id} ⊂ {1, . . .m},
i1 < · · · < id. We denote by |ωI |h the image of ωI in |Ω̃|+(h).

8.3.1. Lemma-Definition. — There is a unique element |ω0|h in |Ω̃|+(h), the
canonical volume form, such that, for every I, there exists Z-valued definable func-
tions αI and βI on h, with βI only taking as values 1 and 0, such that αI + βI > 0
on h, |ωI |h = βIL

−αI |ω0|h in |Ω̃|+(h), and such that infI αI = 0.

Proof. — Unicity is clear. Fix a gauge form |ω| on h. We may write |ωI |h =
βI [L

−γI ]|ω|, with γI and βI Z-valued definable functions on h, and βI only taking as
values 1 and 0. If one sets α = infI γI , then |ω0|h := [L−α]|ω| satisfies the required
property.
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We call |ω0|h the canonical volume form on h. It is a gauge form on h. It is an
analogue to the canonical volume form defined by Serre in [27] in the p-adic case.

8.4. Order of jacobian. — Let f : X → Y be a definable morphism between
two definable subassignments of h[m,n, r] and h[m′, n′, r′], respectively. Assume X
and Y are both of K-dimension d and that the fibers of f all have K-dimension 0.
By (8.2.1) we may consider f ∗|ω0|Y and we may write

(8.4.1) f ∗|ω0|Y = L−ordjacf |ω0|X ,

with ordjacf a Z-valued function on X defined outside a definable subassignment
of K-dimension < d. In particular, ordjacf and Lordjacf make sense as Functions in
Cd

+(X).

8.4.1. Proposition (Chain rule for ordjac). — Let f : X → Y and g : Y → Z
be definable functions between definable subassignments of K-dimension d. Assume
the fibers of f and g all have K-dimension 0. Then

ordjac(g ◦ f) = (ordjacf) + ((ordjacg) ◦ f)

outside a definable subassignment of K-dimension < d.

Proof. — Follows directly from the chain rule for the pullback of usual algebraic
differential forms.

8.5. Relative variants. — Let W = X ×X×Zr and W ′ = X ′×X ′×Zr′ , with X
and X ′ k((t))-varieties and X and X ′ k-varieties. We fix a definable subassignment
Λ of hW ′ and we consider a definable subassignment h of Λ × hW . We assume that
the projection h→ Λ is equidimensional of relative dimension d.

If we have a morphism Y → Y ′ of k((t))-varieties, we denote by Ωi
Y|Y ′ the sheaf

of degree i relative differential forms on Y . It is the i-th exterior product of the
sheaf Ω1

Y|Y ′ of relative Kähler differentials. We shall set Ωi
hY |Y ′ := AY ⊗OY

Ωi
Y|Y ′ and

Ωi
|Y ′(hY) := Ωi

hY |Y ′(Y). We shall now take for Y ′ the Zariski closure of the image
of Λ in hX ′ and for Y the Zariski closure of the image of h in hX×X ′ , and we set
Ωi(h→ Λ) := A(h) ⊗AhY

Ωi
|Y ′(hY).

Assume h → Λ is of relative K-dimension d. We denote by A<(h → Λ) the
ideal of definable functions on h vanishing on the complement of a subassignment
of relative dimension < d, and we set

Ω̃d(h→ Λ) := A(h) ⊗A(hY ) Ωd
|Y ′(hY)/A<(h→ Λ) ⊗A(hY ) Ωd

|Y ′(hY).

As in 8.2, we have a natural morphism λ : A(h)/A<(h → Λ) → Cd
+(h → Λ).

We define the set |Ω̃|+(h → Λ) of relative positive volume forms on h as in 8.2,
but replacing Ω̃d(h) by Ω̃d(h → Λ), A(h)/A<(h) by A(h)/A<(h → Λ) and Cd

+(h)

by Cd
+(h → Λ). One defines similarly |Ω̃|(h → Λ). An element of any of the sets

Ωi(h → Λ), Ω̃d(h → Λ), |Ω̃|+(h → Λ) and |Ω̃|(h → Λ) has the property that, for
any point λ of Λ, it naturally restricts to an element of the correponding set on the
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fiber hλ. This follows from Proposition 3.4.1. Our constructions of pullbacks also
have natural relative analogues.

These constructions may be extended to the following slightly more general set-
ting: h is now assumed to be a definable subassignment of hW and a morphism
p : h → Λ is given. We assume p is equidimensional of relative dimension d over Λ.
We have a commutative diagram:

h
ip

//

p
��=

==
==

==
=

Γp ⊂ Λ × hW

yyrrrrrrrrrrr

Λ,

where ip denotes the morphism to the graph Γp of p. The preceding constructions

apply to Γp, and we may define |Ω̃|+(h → Λ), etc, by pulling-back |Ω̃|+(Γp → Λ),
etc, by the isomorphism ip. One checks that these definitions extend the previous
ones (cf. the final remark at the end of this subsection).

Now assume h is a definable subassignment of Λ[m,n, r] equidimensional of rel-
ative dimension d over Λ. One may define similarly as in 8.3 a canonical volume
form |ω0|h|Λ in |Ω̃|+(h → Λ). Furthermore |ω0|h|Λ restricts to the canonical volume
form to all fibers over Λ.

If now h′ is a definable subassignment of Λ[m′, n′, r′] equidimensional of relative
dimension d over Λ and f : h → h′ is a morphism equidimensional of relative
dimension 0 and commuting with the projection on Λ, one may define the relative
ordjacΛf by the following analogue of (8.4.1):

(8.5.1) f ∗|ω0|h′|Λ = L−ordjacΛf |ω0|h|Λ.

The function ordjacΛf is well defined outside a definable subassignment of relative
K-dimension < d and it restriction to every fiber hλ is equal to ordjacf|hλ

outside a
definable subassignment of K-dimension < d. In particular, ordjacΛf and LordjacΛf

make sense as Functions in Cd
+(h→ Λ). The analogue of Proposition 8.4.1 holds for

ordjacΛ.
Now consider the following setting: h and h′ are respectively definable subassign-

ments of h[m,n, r] and h[m′, n′, r′], p : h→ Λ and p′ : h′ → Λ are equidimensional of
dimension f and f : h→ h′ is equidimensional of dimension 0 with p′ ◦ f = p. The
construction of the relative canonical volume forms and of ordjacΛ extends directly
to this setting by using pullbacks by p and p′. The analogue of Proposition 8.4.1
for ordjacΛ still holds. This definition is compatible with the previous one since,
when Λ is in Defk and h is a definable subassignment of Λ[m,n, r] with projection
p : h → Λ equidimensional of relative dimension d, the pullback of the canonical
relative volume form |ω0|Γp

by the graph morphism ip : h → Γp is equal to |ω0|h,
hence ordjacΛip is equal to zero.

8.6. Models and volume forms. — The following construction will not be
needed until § 16. Let X 0 be an algebraic variety over Spec k[[t]], say flat over
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Spec k[[t]]. Set X := X 0 ⊗Spec k[[t]] Spec k((t)). In other words X is the generic fiber
of X 0 and X 0 is a model of X . Assume X is of dimension d. Let us denote by
U0 the largest open subset of X 0 on which the sheaf Ωd

X 0|k[[t]] is locally free of rank

1 over k[[t]]. Its generic fiber U := U0 ⊗Spec k[[t]] Spec k((t)) may be identified with
the smooth locus of X . Let us choose a finite cover of U0 by open subsets U0

i on
which the sheaf Ωd

X 0|k[[t]] is generated by a non zero form ωi in Ωd
U0

i |k[[t]]
(U0

i ). Each

form ωi gives rise to a volume form |ωi| in |Ω|+(hUi
), where Ui denotes the generic

fiber of Ui. The subsets Ui form an open cover of U . Clearly there exists a unique
element |ω0| in |Ω̃|+(hX ) such that |ω0||hUi

= |ωi| in |Ω̃|+(hUi
). Furthermore, |ω0|

only depends on the model X 0, not on the choice of the cover by open subsets U0
i .

9. Integrals in dimension one

9.1. Relative integrals relative to the projection S[1, 0, 0] → S. — Let S
be in Defk and let ϕ be in C+(S[1, 0, 0] → S). Because C+(S[1, 0, 0] → S) =
⊕1

i=0C
i
+(S[1, 0, 0] → S), we can write ϕ = [ϕ0] + [ϕ1] with ϕi in C+(S[1, 0, 0]) of

relative dimension i relative to the projection S[1, 0, 0] → S for i = 0, 1. Let
Pi for i = 0, 1 be a cell decomposition of S[1, 0, 0] adapted to ϕi as in Theorem
7.2.1 and set Pii = {Z ∈ Pi | Z is a i-cell}. Fix Zi in Pii for i = 0, 1. The
cell Zi has a presentation λi : Zi → ZCi

with ZC1 = ZC1,α1,ξ1,c1 ⊂ S[1, s1, r1], and
ZC0 = ZC0,c0 ⊂ S[1, s0, r0], for some ri, si ≥ 0, r0 = 0, and some definable morphisms
ci, α1, and ξ1, for i = 1, 2. There is ψi ∈ C+(Ci) such that

ϕi|Zi
= λ∗i p

∗
i (ψi),

where pi is the projection ZCi
→ Ci, i = 0, 1. Note that ψi is unique for fixed ϕi

since λi is a bijection and pi is surjective. For i = 0, 1 we write ji for the inclusion

ji : Ci → S[0, si, ri],

and πi for the projection

S[0, si, ri] → S[0, 0, ri].

9.1.1. Lemma-Definition. — The following is independent of the choice of λi,
i = 0, 1, were we use the above notation. We define

µS,Z0(ϕ01Z0) := π0!(j0!(ψ0))

in C+(S). Also, we say ϕ11Z1 is S-integrable along Z1 if π1!j1!(L
−α1−1ψ1) is S-

integrable and if this is the case we define

µS,Z1(ϕ11Z1) := µS(π1!(j1!(L
−α1−1ψ1)))

in C+(S). Here, ji!, πi!, and µS are as in sections 5.5, 5.6, and 5.7, respectively.

9.1.2. Lemma-Definition. — The following is independent of the choice of ϕi

and Pi, i = 0, 1, were we use the above notation. We call ϕ S-integrable if ϕ11Z is
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S-integrable along Z for each Z ∈ P11. If this is the case we define µS(ϕ) in C+(S)
as

µS(ϕ) :=
∑

i=0,1

∑

Z∈Pii

µS,Z(ϕi1Z).

Proof of Lemma 9.1.1. — We first prove independence from the choice of λ0.
Suppose there is another presentation λ′0 : Z0 → ZC′

0,c′0
and ψ′

0 ∈ C+(C ′
0) with

λ′0
∗p′0

∗(ψ′
0) = ϕ0|Z0

with p′0 : ZC′
0,c′0

→ C ′
0 the projection. Then, by the definition

of 0-cells and by functoriality of the pullback, there is a definable isomorphism
f0 : C0 → C ′

0 over S with f ∗
0 (ψ′

0) = ψ0. Now independence from the choice of λ0

follows from Proposition 5.8.6.
Next we prove independence from the choice of λ1. Let λ′1 : Z1 → ZC′

1
=

Z ′
C′

1,α′
1,ξ′1,c′1

⊂ S[1, s′1, r
′
1] be another presentation, for some s′1, r

′
1 ≥ 0 and some

definable morphisms α′
1, ξ

′
1, and c′1, and ψ′

1 ∈ C+(C) such that

ϕ1|Z1
= λ′∗1 p

′∗
1 (ψ′

1),

where p′1 is the projection ZC′
1
→ C ′

1. Write π′
1 for the projection S[0, s′1, r

′
1] →

S[0, 0, r′1] and j′1 for the inclusion ZC′
1
→ S[0, s′1, r

′
1].

We prove that there is a definable isomorphism f1 : C1 → C ′
1 over S such that

f ∗
1 (α′

1) = α1. Since f1, λ1, and λ′1 are definable isomorphisms, it then follows that
f ∗

1 (ψ′
1) = ψ1, and by Proposition 5.8.6 that

µS(π1!(j1!(L
−α1−1ψ1))) = µS(π′

1!(j
′
1!(L

−α′
1−1ψ′

1)))

which is to prove.
Let us now show that such f1 exists. Without changing S, ψ1, ψ

′
1, C1, C

′
1, α1, or

α′
1, but only possibly changing c1, c

′
1, ξ1, and ξ′1, we may suppose that

c1(x) = 0 ∨ ord(c1(x)) < α1(x)

holds for x ∈ C1 and similarly that c′1(x
′) = 0 ∨ ord(c′1(x

′)) < α′
1(x

′) holds for
x′ ∈ C ′

1.
Similarly, only possibly changing c1, c

′
1, ξ1, and ξ′1, we may also suppose that

c1(x) = c1(y)

when x, y ∈ C1 lie above the same point s in S and satisfy

ord(c1(x) − c1(y)) ≥ α1(x) = α1(y),

and that c′1(x
′) = c′1(y

′) when the analogue condition is satisfied for x′, y′ ∈ C ′
1 (note

that there are only finitely values for c1(x)(K) when x varies over all points x on
C1(K) above a point s ∈ S(K), and their number is uniformly bounded in s; hence,
one can take their mean value as new c1; this is definable).

For simplicity of notation we first suppose that S is hSpec(k). Fix K ∈ Fieldk;
we reason now on the K-rational points of the occurring subassignments. Write
c1(C1)(K) = {d1, . . . , dl} and c′1(C

′
1)(K) = {d′1, . . . , d

′
l′}, where c1(C1) and c′1(C

′
1)

are the images of c1 and c′1.
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Set Dzi := {η ∈ K | θi(z, η)} and D′
zi := {η ∈ K | θ′i(z, η)} for each i and each

z ∈ Z, where θi is the condition

∃x ∈ C1(K) (c1(x) = di ∧ α1(x) = z ∧ ξ1(x) = η),

and θ′i the condition ∃x ∈ C ′
1(K) (c′1(x) = d′i ∧ α

′
1(x) = z ∧ ξ′1(x) = η).

By construction, we have for all i 6= j that if ord(di − dj) ≥ z for certain i, j, k
then

either Dzi = ∅, or, Dzj = ∅,

and similarly if ord(d′i − d′j) ≥ z then either D′
zi = ∅, or, D′

zj = ∅. By this and by
construction, it follows that for each i and z with Dzi 6= ∅ there exists a unique j
such that ord(di − d′j) ≥ z. Moreover, when Dzi 6= ∅ and ord(di − d′j) > z, then
Dzi → D′

zj : η → η is a bijection. When Dzi 6= ∅ and ord(di − d′j) = z, then
Dzi → D′

zj : η → η + ac(di − d′j) is a bijection.
By the injectivity of λ1, resp. λ′1, a point x ∈ C1, resp. x′ ∈ C ′

1, is determined by
(“interdefinable with”)

c1(x), α1(x), and ξ1(x),

resp. by c′1(x
′), α′

1(x
′), and ξ′1(x

′). Since the number of points in c1(C1)(K) and
c′1(C

′
1)(K) is uniformly bounded when K varies, it follows by the above discussion

that there is a definable isomorphism f1 : C1 → C ′
1 satisfying f ∗

1 (α′
1) = α1.

This argument extends to general S in Defk by letting the above construction
depend on parameters and by noting that for fixed s ∈ S the set of points in
c1(C)(K) which lie above s are finite and bounded uniformly in K ∈ Fieldk(s) and
s.

Proof of Lemma 9.1.2. — First we prove independence of µS(ϕ) from the choice of
ϕi, i = 0, 1. Actually, ϕ0 is uniquely defined. For ϕ1, we suppose that there is
ϕ′

1 ∈ C+(S[1, 0, 0]) with [ϕ1] = [ϕ′
1] and we suppose that the cell decomposition P1

is adapted to both ϕ1 and ϕ′
1 (see Proposition 7.3.1). For a 1-cell Z in P1 with basis

C, representation λ : Z → ZC , and projection p : ZC → C, one has ψ, ψ′ ∈ C+(C)
satisfying λ∗p∗(ψ) = ϕ1|Z and λ∗p∗(ψ′) = ϕ′

1|Z . Since [ϕ1] = [ϕ′
1] we must have

ψ = ψ′ and hence ϕ11Z = ϕ′
11Z , because Z is a 1-cell adapted to ϕ1. This shows

that there is no dependence on the choice of ϕ1 neither.
Next we prove that µS(ϕ) is independent of the choice of P0. By Proposition

7.3.1 it is enough to consider a refinement P ′
0 of P0 adapted to ϕ0 and to compare∑

Z∈P00
µS,Z(ϕ01Z) with

∑
Z∈P ′

00
µS,Z(ϕ01Z), where P ′

00 is the collection of 0-cells in

P ′
0.
Clearly, for each 1-cell Z in P0 (resp. in P ′

0) we have ϕ01Z = 0, because ϕ0 is
of relative dimension 0 and P0 (resp. P ′

0) is adapted to ϕ0. Since the union of two
0-cells is a 0-cell, and since for two different 0-cells Z1, Z2 in P00 one clearly has

µS,Z1∪Z2(ϕ01Z1∪Z2) = µS,Z1(ϕ01Z1) + µS,Z2(ϕ01Z2),

we may suppose that in P00 (resp. in P ′
00) there is only one cell Z (resp. Z ′). Since

P ′
0 is a refinement of P0 and Z and Z ′ are 0-cells, it follows that Z ⊂ Z ′ and Z ′ \Z
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is also a 0-cell . We also have ϕ01Z′\Z = 0, since P0 and P ′
0 are adapted to ϕ0. Now

we calculate

µS,Z′(ϕ01Z′) = µS,Z(ϕ01Z) + µS,Z′\Z(ϕ01Z′\Z)

= µS,Z(ϕ01Z)

which proves that µS(ϕ) is independent of the choice of P0.

Next we prove that µS(ϕ) is independent of the choice of P1. By Proposition 7.3.1
it is enough to compare two cell decompositions P1 and P ′

1 of S[1, 0, 0] adapted to
ϕ1 such that P ′

1 is a refinement of P1.
Fix a 1-cell Z in P1. Note that the union of two disjoint 1-cells is a single 1-cell.

Similarly, the union of two disjoint 0-cells is a single 0-cell. Also, a 0-cell cannot
contain a 1-cell.

Hence, we may suppose that Z ′ ∈ P ′
1 is a refinement of Z such that Z \Z ′ is a 0-

cell. Let λ : Z → ZC be a presentation of Z, and let λ′ : Z ′ → Z ′
C′ be a presentation

of Z ′. Write p : ZC → C and p′ : Z ′
C′ → C ′ for the projections. Let g : C ′ → C

satisfy g ◦ p′ ◦ λ′ = p ◦ λ|Z′.
By a fiber product argument we may suppose that λ = id : Z → Z = ZC . Indeed,

by Propositions 5.8.5 and 5.8.6 we may replace Z by ZC with presentation id, ϕ by
(λ−1)∗(ϕ), Z ′ by Graph(g ◦ p′ ◦ λ′) ⊂ ZC with presentation λ′ ⊗ id.

The Lemma now follows from Lemma 9.1.1 and Lemma 9.1.3.

9.1.3. Lemma. — Let Z ⊂ S[1, 0, 0] be a 1-cell adapted to some ϕ ∈ C+(Z) and
let Z ′ be a refinement of Z such that Z \ Z ′ is a 0-cell. Suppose that id = λ : Z →
Z = ZC,α,ξ,c and λ′ : Z ′ → Z ′

C′,α′,ξ′,c′ are presentations and let g : C ′ → C satisfy
g ◦ p′ ◦ λ′ = p ◦ λ|Z′, where p : Z → C and p′ : Z ′

C′ → C ′ are the projections.
Let Z ′

2 be the definable subassignment of Z ′ determined by

x ∈ Z ′ ∧ α ◦ g ◦ p′ ◦ λ′(x) < α′ ◦ p′ ◦ λ′(x),

and set Z1 = Z ′
1 := Z ′ \ Z ′

2, and Z2 := Z \ Z1.
Then, Zi and Z ′

i, i = 1, 2, are either empty or 1-cells with presentations λi =
λ|Zi

: Zi → ZCi
and λ′i = λ′|Z′

i
: Z ′

i → Z ′
C′

i
. Moreover,

µS,Z2(ϕ1Z2) = µS,Z′
2
(ϕ1Z′

2
).

Proof. — The first statement follows from Lemma 7.2.3.
For the statement about the equality of measures, we may suppose that Z = Z2

and hence Z ′ = Z ′
2. It then clearly is enough to show that

µS,Z′(1Z′) = Lα−11C

holds in C+(S).
After the transformation (x0, x) 7→ (x0, x + c(x0)), for (x0, x) ∈ Z and x0 ∈ C,

we may suppose that c = 0 on C.
We may take the same suppositions as in the proof of Lemma 9.1.1, in particular,

we may suppose that c′(x) = 0 ∨ ord(c′(x)) < α′(x) holds for x ∈ C ′ and that



CONSTRUCTIBLE MOTIVIC FUNCTIONS AND MOTIVIC INTEGRATION 49

c′(x) = c′(y) when x, y ∈ C ′ lie above the same point in C and satisfy ord(c′(x) −
c′(y)) ≥ α′(x) = α′(y).

First suppose that S = C = hSpec(k). Fix K ∈ Fieldk and write ξ1 := ξ(C)(K) ∈
K, α1 := α(C)(K) ∈ Z, and {c′1, . . . , c

′
l} = c′(C ′)(K) ⊂ K((t)).

Let θi be the LDP,P(K)-formula ∃x ∈ C ′ (c′(x) = c′i ∧ α
′(x) = z ∧ ξ′(x) = η).

Note that by construction α′(x) > α1 for each x ∈ C ′(K) and hence necessarily
ord(c′i) = α1 and ac(c′i) = ξ1 for each i.

We proceed by induction on l. If l = 1, then θ1(z, η) must be equivalent to
z > α1 ∧ η 6= 0 and hence

µS,Z′(1Z′) =

∞∑

i=0

(L − 1)L−α1−2−i = Lα1−1.

If l > 1 let e(i) ∈ Z be max(ord(c′i−c
′
j))i6=j and D(i) := {c′i}∪{c′j | ord(c′i−c

′
j) =

e(i)} for each i. Choose i0 such that e(i0) = max(e(i))i.
For simplicity we assume for all i that e(i) = e(i0) implies that c′i ∈ D(i0) (if this

is not true one should do the construction at once for all sets D(i) with e(i) = e(i0)).
By replacing c′i0 by another element ofD(i0) we may suppose that there are a η ∈ K×

and infinitely many z such that θi0(z, η) is satisfied. Let d be the number of elements
in D(i0) (we know that d > 1).

By construction, for each i ∈ D(i0), {(z, η) ∈ Z × K | θi(z, η)} either contains
B := {(z, η) ∈ Z×K | z > e(i0)∧ η 6= 0} or has empty intersection with B, hence if
we add the points c′i for i ∈ D(i0) to Z ′ we should be able to calculate its measure
as we did for l = 1. We make this idea precise and independent of an ordering of
the points c′i.

Set c′′i := c′i for i 6∈ D(i0) and set

c′′i0 := (
∑

i∈D(i0)

c′i)/d.

Let Z ′′ ∈ DefK be (Z ′∪D(i0)) \ {c
′′
i0
}. Doing this uniformly in K, there is a natural

cell decomposition of Z ′′, which induces the description

Z ′′(K) = {x ∈ K((t)) | ∨i∈I∃z, η (ord(x− c′′i ) = z ∧ ac(x− c′′i ) = η ∧ θ′i(z, η))},

with I = ({1, . . . , l} \D(i0))∪ {i0}, θ
′
i = θi for i 6= i0, and where θ′i0 is the condition

(z > e1 ∧ η 6= 0) ∨i∈D(i0) (z = e1 ∧ θi(e1, η + ac(c′′i0 − c′i)) ∨ (z < e1 ∧ θi(z, η))).

By a similar calculation as for l = 1 we can show that

µS,Z′′(1Z′′) = µS,Z′(1Z′),

and by the induction hypothesis we obtain that

µS,Z′′(1Z′′) = Lα1−1.

This concludes the induction argument and the case S = hSpec(k). This construction
extends to the case of general S, hence the Lemma is proven.

In fact, the proof of Lemma 9.1.3 also yields the following statement:
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9.1.4. Lemma. — Let X ⊂ S[1, 0, 0] be a definable subassignment which projects
onto S under p : X → S such that for each x0 ∈ S and each K ∈ Fieldk the fiber
p−1(x0)(K) is either empty or a ball of volume Lαx0−1, αx0 ∈ Z, which is independent
of K (as in statement 1) of Proposition 7.5.4). Let ϕ ∈ C+(X) be of relative K-
dimension 1 rel. p such that there is ψ ∈ C+(S) satisfying p∗(ψ) = ϕ. Suppose that
α : S → Z is a definable morphism such that αx0 = α(x0) for each x0. Then

µS([ϕ]) = L−αψ.

9.2. Direct image under the projection S[1, 0, 0] → S. — Let S be in Defk

and write π : S[1, 0, 0] → S for the projection. Let ϕ be in C+(S[1, 0, 0]).
We first suppose that ϕ is in Cd

+(S[1, 0, 0]) for some d and thus that ϕ = [ϕd] for

some ϕd ∈ C≤d
+ (S). Let P be a cell decomposition of S[1, 0, 0] adapted to ϕd as in

Theorem 7.2.1 and set Pi = {Z ∈ P | Z is a i-cell} for i = 0, 1.
Fix Zi in Pi, i = 0, 1. The cell Z0 has a presentation

λ0 : Z0 → ZC0,c0 ⊂ S[0, s0, 0],

for some s0 ≥ 0 and some definable morphism c0. There is a unique ψ0 ∈ C+(C0)
such that

ϕd1Z0 = λ0
∗p0

∗(ψ0),

where p0 is the projection p0 : ZC0 → C0. We write j0 for the inclusion j0 : C0 →
S[0, s0, 0], and π0 for the projection S[0, s0, 0] → S. Denote by γ : C0 → Z the
definable morphism y 7→ (ordjacp0) ◦ p

−1
0 , where ordjac is defined as in section 8.4.

9.2.1. Lemma-Definition. — The following is independent of the choice of λ0,
where we use the above notation. The constructible function

π0!(j0!(ψ0L
γ))

is in C≤d
+ (S) and we define

π!Z0(ϕd1Z0)

as the image of π0!(j0!(ψ0L
γ)) under the natural morphism C≤d

+ (S) → Cd
+(S). Here,

j0! and π0! are as in sections 5.5 and 5.6, respectively. Also, we say ϕd1Z1 is S-
integrable along Z1 if ϕd1Z1 is S-integrable along Z1 as in 9.1.1. If this is the case,

µS,Z1(1Z1ϕd)

as defined in Lemma 9.1.1 is in C≤d−1
+ (S) and we define

π!Z1(1Z1ϕd)

as the image of µS,Z1(1Z1ϕd) under the natural morphism C≤d−1
+ (S) → Cd−1

+ (S).

9.2.2. Lemma-Definition. — The following is independent of the choice of P
and ϕd, were we use the above notation. We say ϕ is S-integrable if ϕd1Z is S-
integrable along Z for each Z ∈ P1. If this is the case we define π!(ϕ) in C+(S)
as

π!(ϕ) :=
∑

Z∈P

π!Z(ϕd1Z),
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where π!Z(ϕd1Z) is defined as in 9.2.1.

Finally we take a general ϕ ∈ C+(S[1, 0, 0]) and we write
∑

d[ϕd] with ϕd in

C≤d
+ (S[1, 0, 0]), and we define

π!(ϕ) :=
∑

d

π!([ϕd]),

where each π!([ϕd]) is defined as in 9.2.2. By the above discussion this is independent
of the choices.

Proof of Lemma 9.2.1. — Let λ′0 : Z0 → Z ′
C′

0,c′0
be a different presentation of Z0.

Since Z0 is a 0-cell, clearly there is a definable isomorphism g : C0 → C ′
0 compatible

with the maps Z0 → C0 and Z0 → C ′
0. Since γ = (ordjacp′0) ◦ p

′
0
−1 ◦ g, where p′0

denotes the projection p′0 : ZC′
0
→ C ′

0, independence from the choice of λ0 follows
by functorial properties of the pullback. Since Z0 is a 0-cell, one has by Proposition
3.4.1 that KdimX = Kdim π(X) for each X ⊂ Z0, where still π : S[1, 0, 0] → S is
the projection. Hence, it follows that π0!(j0!(ψ0L

γ)) is in C≤d
+ (S). Similarly it follows

that µS,Z1(1Z1ϕd) is in C≤d−1
+ (S) by Proposition 3.4.1, since for Z1 the fibers under

the projection π have K-dimension 1.

Proof of Lemma 9.2.2. — First we prove independence of π!(ϕ) from the choice of

ϕd. Suppose that there is ϕ′
d ∈ C≤d

+ (S[1, 0, 0]) with [ϕd] = [ϕ′
d] hence there exist ε

and ε′ in C≤d−1
+ (S[1, 0, 0]) such that ϕd + ε = ϕ′

d + ε′. We may suppose that the cell
decomposition P is adapted to ϕd, ϕ

′
d, ε, and ε′. By dimensional considerations as

in the proof of Lemma 9.2.1, we find that
∑

Z∈P

π!Z(ε1Z) =
∑

Z∈P

π!Z(ε′1Z) = 0,

and thus that ∑

Z∈P

π!Z(ϕd1Z) =
∑

Z∈P

π!Z(ϕ′
d1Z),

by the additivity of π!Z . Hence, there is no dependence on the choice of ϕd.
Next we prove that π!(ϕ) is independent of the choice of P. By Proposition 7.3.1

it is enough to compare two cell decompositions P and P ′ of S[1, 0, 0] adapted to
ϕd such that P ′ is a refinement of P.

Similarly as in the proof of Lemma 9.1.2, we can fix a 1-cell Z1 ∈ P and a 0-cell
Z0 ∈ P and we may suppose that Z ′

1 ∈ P ′ is a 1-cell such that Z ′
0 := Z1 \ Z

′
1 is a

0-cell in P ′ and that Z0 is in P ′.
By dimensional considerations as in the proof of Lemma 9.2.1, we find that

π!Z′
0
(ϕd1Z′

0
) = 0. Hence, we only have to show that

π!Z1(ϕd1Z1) = π!Z′
1
(ϕd1Z′

1
).

This follows from Lemma 9.1.3 in the same way as this Lemma is used in the proof
of Lemma 9.1.2.
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9.3. Basic properties. —

9.3.1. Proposition. — Let S be in Defk and f, g in C+(S[1, 0, 0]). If g ≥ f and
g is S-integrable, then f is S-integrable.

Proof. — This follows immediately from Proposition 5.8.3 and the definition of in-
tegrability in 9.1.2 by taking a cell decomposition adapted to f and g which exists
by Proposition 7.3.1.

9.3.2. Proposition (Change of variable). — Let X and Y be definable sub-
assignments of S[1, 0, 0] for some S in Defk and let f : X → Y be a definable
isomorphism over S. Suppose that X and Y are equidimensional of relative dimen-
sion 1 relative to the projection to S. Let ϕ be in C1

+(Y → S). We use ordjacSf
as defined in section 8.5. Then, ϕ is S-integrable if and only if L−ordjacSff ∗(ϕ) is
S-integrable and if this is the case then

µS(ϕ) = µS(L−ordjacSff ∗(ϕ))

holds in C+(S).

Proof. — Let ϕ1 be in C+(Y ) of relative K-dimension 1 such that [ϕ1] = ϕ. Let
δ : X → hZ be a definable morphism which is almost everywhere equal to ordjacSf .

By Theorem 7.2.1, Lemma 9.3.3 and Proposition 7.3.1, it follows that we can
partition X into cells which are adapted to f ∗(ϕ1) and δ such that 1), 2), and 3) of
Lemma 9.3.3 are satisfied. Now the Proposition follows immediately from Lemma
9.1.4.

9.3.3. Lemma. — Let X and Y be definable subassignments of S[1, 0, 0] for some
S in Defk and let f : X → Y be a definable isomorphism over S. Suppose that
X and Y are equidimensional of relative dimension 1 relative to the projection to
S. Let δ : X → hZ be a definable morphism which is almost everywhere equal to
ordjacSf . Then, there exists a cell decomposition P of X adapted to δ into cells Zi

such that, for each 1-cell Zi in P with presentation λi : Zi → ZCi
= ZCi,αi,ξi,ci

and
with projection pi : ZCi

→ Ci, statements (1) and (2) of Proposition 7.5.4 hold, as
well as the following additional condition:

(3) For each K over k and each ξ ∈ Ci(K) the map f induces a definable iso-
morphism between the fiber p−1

i (ξ)(K) and a ball of volume L−αi(ξ)−δ(x) (or the
empty set), where δ(x) is independent of the choice of x ∈ λ−1

i p−1
i (ξ) and of K.

Proof. — By Theorem 7.2.1, Proposition 7.5.4 and Proposition 7.3.1, it follows that
we can partition X into cells which are adapted to δ such that (1) and (2) of
Proposition 7.5.4 are satisfied.

By adding more parameters to X and Y and by Proposition 5.8.4 we may suppose
that X = Z for some 1-cell Z in P, and that id : X → X is a presentation. In
particular, there is a definable morphism δ0 : S → Z such that δ(x) = δ0 ◦ p(x)
where p = X → S is the projection.
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By Lemma 7.5.5 and Proposition 7.5.4 we know that for each x0 ∈ C the fiber
p−1(x0)(K) is either empty or a ball of fixed volume L−αi(x0) for K a field over k(x0),
and that f maps this ball into a ball of volume L−αi(x0)−δ0(x0). Let C1 be the part
of C such that f induces a definable bijection between such balls of volume L−αi(x0)

and the balls of corresponding volume L−αi(x0)−δ0(x0) for x0 ∈ C1 and let C2 be
C \C1. One sees that Xi := X ∩Ci[1, 0, 0] are cells with presentation id : Xi → Xi.
Set Yi = f(Xi).

It is enough to prove the Lemma for the restrictions f|X1
: X1 → Y1 and for

f|X2
: X2 → Y2. For X1, the Lemma follows immediately from Lemma 9.1.4.

Next we show that we can reduce to the case X2 = ∅ and this will finish the proof.
Suppose that X = X2 to simplify the notation. Since for x0 ∈ C the ball p−1(x0)(K)
is mapped under f into a proper subset of a ball of volume L−αi(x0)−δ0(x0) for each
K over k(x0), we are in good shape if we apply cell decomposition to Y , because the
fibers of these cells will be strictly smaller balls than those of volume L−αi(x0)−δ0(x0)

(by the definition of cells). If we now add the so obtained additional parameters to
X and Y and apply again a cell decomposition to X we can assure that the fibers of
the cells partitioning X are mapped into the fibers of the cells partitioning Y . Hence,
the fibers of the cells in X are strictly smaller balls than those of volume L−αi(x0)

by Lemma 7.5.5. An application of the inverse function statement of Lemma 7.5.5
implies that f induces a bijection on all of these fibers onto balls of the right size.
This reduces the problem to the case X2 = ∅ and concludes the proof.

II

CONSTRUCTION OF THE GENERAL MOTIVIC MEASURE

10. Statement of the main result

10.1. Integration. — In this section, and until section 15, all definable subassign-
ments will belong to Defk. In particular they will be affine. To be able to integrate
positive motivic constructible Functions, we have to define integrable positive Func-
tions. These, and more generally S-integrable positive Functions, will be defined
inductively, as follows:

10.1.1. Theorem. — Let S be in Defk. There is a unique functor from the cate-
gory DefS to the category of abelian semigroups, Z 7→ ISC+(Z), assigning to every
morphism f : Z → Y in DefS a morphism f! : ISC+(Z) → ISC+(Y ) and satisfying
the following axioms:

A0 (Functoriality):
(a) For every composable morphisms f and g in DefS, (f ◦ g)! = f! ◦ g!. In

particular, id! = id.
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(b) Let λ : S → S ′ be a morphism in Defk and denote by λ+ : DefS →
DefS′ the functor induced by composition with λ, we have the inclusion
IS′C+(λ+(Z)) ⊂ ISC+(Z) for Z in DefS, and for ϕ in IS′C+(λ+(Z)),
f!(ϕ) is the same Function computed in IS or in IS′.

(c) If f : X → Y is a morphism in DefS, a positive constructible Function ϕ
on X belongs to ISC+(X) if and only if ϕ belongs to IYC+(X) and f!(ϕ)
belongs to ISC+(Y ).

A1 (Integrability):
(a) For every Z in DefS, ISC+(Z) is a graded subsemigroup of C+(Z).
(b) ISC+(S) = C+(S).

A2 (Additivity): Let Z be a definable subassignment of W in DefS. Assume Z
is the disjoint union of two definable subassignments Z1 and Z2 of W . Then,
for every morphism f : Z → Y in DefS, the isomorphism C+(Z) ≃ C+(Z1) ⊕
C+(Z2) induces an isomorphism ISC+(Z) ≃ ISC+(Z1)⊕ ISC+(Z2) under which
we have f! = f|Z1! ⊕ f|Z2!.

A3 (Projection formula): For every morphism f : Z → Y in DefS, and every α
in C+(Y ) and β in ISC+(Z), αf!(β) belongs to ISC+(Y ) if and only if f ∗(α)β
is in ISC+(Z). If these conditions are verified, then f!(f

∗(α)β) = αf!(β).

A4 (Inclusions): If i : Z →֒ Z ′ be the inclusion between two definable sub-
assignments of some object in DefS, for every ϕ in C+(Z), [ϕ] lies in ISC+(Z)
if and only if [i!ϕ] belongs to ISC+(Z ′), with i! defined as in 5.5. If this is the
case, then i!([ϕ]) = [i!(ϕ)].

A5 (Projection on k-variables): Let Y be in DefS. Consider the projection
π : Z = Y [0, n, 0] → Y . Let ϕ be in C+(Z). Then [ϕ] belongs to ISC+(Z) if
and only if [π!(ϕ)] belongs to ISC+(Y ), π! being defined as in 5.6. Furthermore,
when this holds, π!([ϕ]) = [π!(ϕ)].

A6 (Projection on Z-variables): Let Y be in DefS. Consider the projection
π : Z = Y [0, 0, r] → Y . Take ϕ in C+(Z). Then [ϕ] belongs to ISC+(Z) if
and only if there is a function ϕ′ in C+(Z) with [ϕ′] = [ϕ] such that ϕ′ is π-
integrable in the sense of 5.7 and [µS(ϕ′)] belongs to ISC(Y ). Furthermore,
when this holds, π!([ϕ]) = [µS(ϕ′)].

A7 (Relative annuli): Let Y be in DefS and consider definable morphisms
α : Y → Z, ξ : Y → hGm,k

, with Gm,k the multiplicative group A1
k \ {0},

and c : Y → hA1
k((t))

. Then, if Z is the definable subassignment of Y [1, 0, 0]

defined by ord(z − c(y)) = α(y) and ac(z − c(y)) = ξ(y), and f : Z → Y is
the morphism induced by the projection Y × hA1

k((t))
→ Y , [1Z ] is in ISC+(Z)

if and only L−α−1[1Y ] belongs to ISC+(Y ), and, if this is the case, then

f!([1Z ]) = L−α−1[1Y ].
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A8 (Graphs): Let Y be in DefS and consider a definable morphism c : Y →
hA1

k((t))
. If Z is the definable subassignment of Y [1, 0, 0] defined by z− c(y) = 0

and p : Z → Y is the projection, [1Z ] is in ISC+(Z) if and only L(ordjacp)◦p−1

belongs to ISC+(Y ), and, if this is the case, then

f!([1Z ]) = L(ordjacp)◦p−1

.

For f : X → S a morphism, elements of ISC+(X) shall be called S-integrable
positive Functions (or f -integrable positive Functions).

10.1.2. Remark. — Axiom A8 is a special case of Theorem 12.1.1 so Theorem
12.1.1 could replace A8 as an axiom.

10.1.3. Remark. — In general f! is a morphism of abelian semigroups but not of
graded semigroups. There is a shift by the relative K-dimension.

10.2. Motivic measure. — When f : Z → hSpec k is the projection onto the final
subassignment, we write IC+(Z) for IhSpec k

C+(Z). For ϕ in IC+(Z), we define the
motivic measure µ(ϕ) as f!(ϕ) in IC+(Spec k) = SK0(RDefhSpec k

) ⊗N[L−1] A+. We
shall write also µ(Z) for µ([1Z ]), when Z is a definable subassignment of h[m,n, 0]
such that 1Z is integrable. By Proposition 12.2.2 this happens as soon as Z is
bounded in the sense of 12.2.

11. Proof of Theorem 10.1.1

Recall in this section, and until section 15, all definable subassignments belong
to Defk, so in particular they are affine.

11.1. Unicity. — Using A0, it is enough to show, for every f : X → S, the
unicity of ISC+(X) and of f! : ISC+(X) → ISC+(S) = C+(S). We consider first
the case of a projection π : S × Y → S with Y definable subassignment of some
h[m,n, r]. We may assume Y = h[m,n, r]. Indeed, π may be factored as

S × Y

""E
EE

EE
EE

EE

i
// S × h[m,n, r]

xxrrrrrrrrrrr

S

with i the inclusion, so we are done by A0 and A4. The case where m = 0 is
dealed with by using A5, A6, and A0. Let us consider now the case m = 1 and
take ϕ in C+(S[1, 0, 0]). By Theorem 7.2.1, there exists a cell decomposition Z
of S[1, 0, 0] adapted to ϕ, that is, a finite partition of S[1, 0, 0] into cells Zi with

presentation (λi, ZCi
), such that ϕ|Zi

= λ̃∗i p
∗
i (ψi), with ψi in C(Ci) and pi : ZCi

→ Ci

the projection. Furthermore, maybe after applying again Theorem 7.2.1 and taking
a refinement of Z, we may assume the following condition:

(11.1.1) ϕ|Zi
has the same K-dimension asZi for every i.
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Using A2 and A4 we may reduce to the case of the projection f : Z → S of a cell Z
of K-dimension d in S[1, 0, 0] with presentation (λ, ZC) and a function ϕ in C+(Z)

of K-dimension d such that ϕ = λ̃∗p∗(ψ), with ψ in C+(C) and p : ZC → C the
projection. We have to decide when [ϕ] belongs to ISC+(Z) and if it is the case to
compute the value of f!([ϕ]). Let us denote by π̃ : ZC → Z the restriction of the

projection on the S[1, 0, 0]-factor to ZC . The morphism π̃ is the inverse of λ̃. Since

π̃◦ λ̃ = id, it follows from A0 that π̃! and λ̃! are mutually inverse. It follows from A4,
A5 and A6 that π̃!([1ZC

]) = [1Z ], hence λ̃!([1Z ]) = [1ZC
]. So, by using the projection

formula A3, one gets that [ϕ] belongs to ISC+(Z) if and only if p∗ψ[1ZC
] belongs to

ISC+(ZC). By A0, A1(b) and A3 this is equivalent to the condition that ψp!([1ZC
])

belongs to ISC+(C), which amounts to the casem = 0 already considered. Now if [ϕ]
belongs to ISC+(Z), plugging in axioms A7 or A8 depending on the type of the cell
ZC , completely determines the value of f!([ϕ]): it should be equal to h!(ψp!([1ZC

]),
with h the canonical morphism C → S.

Now consider the case of a general morphism f : X → S. We factor it as
f = π ◦ γf , with γf : X → X × S the graph morphism and π : X × S → S the
projection. We consider also the projection p : X × S → X. Since p ◦ γf = id,
it follows from A0 and A1 that IX×SC+(X) = C+(X). Hence a Function φ in
C+(X) will belong to ISC+(X) if and only γf !(φ) belongs to ISC+(X × S) and then
f!(φ) = π!(γf !(φ)). Hence we are left with showing the unicity of γf !. It is enough to
show that γf !(ϕ[1X ]) is uniquely determined for ϕ in C+(X), since one can always
reduce to that case replacing X by some subassignment and using A4. Let us denote
by Γf the graph of f . It follows from the previous discussion of projections that
p![1Γf

] should be of the form Lα[1X ] for some definable function α on X. Since
Lα = γ∗fL

α◦p, we get

[1Γf
] = γf !p!([1Γf

]) = γf !(γ
∗
fL

α◦p[1X ]) = Lα◦pγf !([1X ]),

by using functoriality and the projection formula hence γf !([1X ]) should be equal
to L−α◦p[1Γf

]. Since ϕ = γ∗fp
∗ϕ, it follows again from the projection formula that

γf !(ϕ[1X ]) is uniquely determined.

11.2. Projections. — We will now construct ISC+(S × Y ) and π! when π is the
projection S × Y → S. We start by assuming Y = h[m,n, r], so that S × Y =
S[m,n, r].

When m = n = r = 0 we set ISC+(S) = C+(S) and π! = id.
More generally, we set ISC+(S[0, n, 0]) = C+(S[0, n, 0]) and define

π! : ISC+(S[0, n, 0]) → C+(S)

by π!([ϕ]) = [π!(ϕ)], for ϕ in C+(S[0, n, 0]) of K-dimension d, π! : C+(S[0, n, 0]) →
C+(S) being defined as in 5.6.

Similarly, when m = n = 0, we define ISC+(S[0, 0, r]) as dictated by A6. That
is, for ϕ in C+(Z), we shall say ϕ belongs to ISC+(S[0, 0, r]) if and only if there is a
function ϕ′ in C+(S[0, 0, r]) with [ϕ′] = ϕ such that ϕ′ is S-integrable in the sense of
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5.7,and we set π!(ϕ) = [µS(ϕ′)]. Clearly this definition is independent of the choice
of the representative ϕ′.

We now consider the case when m = 0 and n, r are arbitrary. In this case we
may mix both definitions. More precisely we have the following statement, which
follows from Proposition 5.8.5:

11.2.1. Proposition-Definition. — Let ϕ be a Function in C+(S[0, n, r]). Con-
sider the following commutative diagram of projections

S[0, n, r]
π1

xxqqqqqqqqqq π′
1

&&L
LLLLLLLLL

π

��

S[0, n, 0]

π2

&&MMMMMMMMMMMM
S[0, 0, r]

π′
2

xxqqqqqqqqqqqq

S .

Then ϕ is π1-integrable if and only if π′
1!(ϕ) is π′

2-integrable. We then say ϕ is π-
integrable. If these conditions hold then π2!π1!(ϕ) and π′

2!π
′
1!(ϕ) are equal so we may

define π!(ϕ) to be their commun value.

The case of the projection π : S[1, 0, 0] → S has been considered in 9.2, where
we defined the notion of S-integrability for ϕ in C+(S[1, 0, 0]) and also the value of
π!(ϕ) when ϕ is S-integrable. We can go one step further thanks to the following:

11.2.2. Proposition-Definition. — Let ϕ be a Function in C+(S[1, n, r]). Con-
sider the following commutative diagram of projections

S[1, n, r]
π1

xxrrrrrrrrrr π′
1

&&M
MMMMMMMMM

π

��

S[1, 0, 0]

π2

&&M
MMMMMMMMMMM

S[0, n, r]

π′
2

xxqqqqqqqqqqqq

S .

Then the following conditions are equivalent:

(1) ϕ is π1-integrable and π1!(ϕ) is π2-integrable.
(2) ϕ is π′

1-integrable and π′
1!(ϕ) is π′

2-integrable.

Furthermore, if these conditions are satisfied, then π2!π1!(ϕ) = π′
2!π

′
1!(ϕ). We shall

say ϕ is S-integrable if it satisfies conditions (1) and (2) and we shall then define
π!(ϕ) to be the commun value of π2!π1!(ϕ) and π′

2!π
′
1!(ϕ).

Proof. — Let ϕ be a Function in C+(S[1, n, r]). We may assume ϕ is of the form
ϕ = [ψ] with ψ = a⊗ αLβ, where a in SK0(RDefS[1,n,r]) and α and β are definable
functions S[1, n, r] → Z. We may also choose a cell decomposition which is adapted
to α and β, meaning that the restriction of α and β to every cell λ : Z → ZC ⊂
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S[1, n + n′, r + r′] are the pull-backs of definable functions α′ and β ′ on C. After
adding further auxiliary variables in the residue and value group sorts, that is, after
maybe increasing n′ and r′, we may assume that the first n variables in the residue
field sort and the first r variables in the value group sort do not appear in the
description of the cell ZC and that α′ and β ′ do not depend on these variables. We
now consider the following commutative diagram, with Z ′ := ZC and Z1 and Z ′

1

respectively the image of Z and Z ′ by the corresponding projections:

Z ⊂ S[1, n, r]
π1

ttiiiiii

λ
//

π′
1
%%K

KKKKKKKKKKKKK
Z ′ ⊂ S[1, n+ n′, r + r′]

π̃1

ssgggggggg

π̃′
1

((PPPPPPPPPPPPPPPPPP

Z1 ⊂ S[1, 0, 0]
λ̃

//

π2

%%J
JJJJJJJJJJJJJJJ

Z ′
1 ⊂ S[1, n′, r′]

π̃2

''PPPPPPPPPPPPPPPPP

S[0, n, r]

π′
2ttiiiiiiiiiiii

S[0, n+ n′, r + r′]
µ̃

oo

π̃′
2

ssfffffffffff

S S[0, n′, r′]µ
oo .

We write ψ = λ∗(ψ′).
(a) It follows from the hypothesis we made, since the variables are now “inde-

pendent”, that the statement we want to prove is verified for [ψ′], that is, [ψ′] is π̃1-
integrable and π̃1!([ψ

′]) is π̃2-integrable if and only if [ψ′] is π̃′
1-integrable and π̃′

1!([ψ
′])

is π̃′
2-integrable; if these conditions are satisfied, then π̃2!π̃1!([ψ

′]) = π̃′
2!π̃

′
1!([ψ

′]).
(b) Let us remark that [ψ] is π1-integrable if and only is [ψ′] is π̃1-integrable, and

that then then the pull-back of π̃1!([ψ
′]) by the isomorphism λ̃ is equal to π1!([ψ]).

This is a slight variant of Proposition 5.7.3 and follows directly from the definitions
and Remark 4.8.1. It follows from the hypotheses we made that λ̃ : Z1 → Z ′

1 is the
presentation of a cell adapted to π1!([ψ]). Hence, by construction of integration in
relative dimension 1, π1!([ψ]) is π2-integrable if and only if π̃1!([ψ

′]) is π̃2-integrable
and π̃2!π̃1!([ψ

′]) is µ-integrable. If all the previous conditions are satisfied, then
π2!π1!([ψ]) = µ!π̃2!π̃1!([ψ

′]).
(c) By construction of integration in relative dimension 1, [ψ] is π′

1-integrable
if and only if [ψ′] is π̃′

1-integrable and π̃′
1!([ψ

′]) is µ̃-integrable. If this holds, then
π′

1!([ψ]) = µ̃!π̃
′
1!([ψ

′]). Furthermore it follows from Proposition-Definition 11.2.1 that
for a Function g in C+(S[0, n+ n′]) the condition g is µ̃-integrable and µ̃!(g) is π′

2-
integrable is equivalent to g is π̃′

2-integrable and π̃′
2!(g) is µ-integrable and implies

that π′
2!µ̃!(g) = µ!π̃

′
2!(g).

The statement we have to prove follows directly from the conjunction of (a), (b),
and (c).

Now we would like to define ISC+(S[n,m, r]) by induction on n by using a fac-
torisation

(11.2.1) S[m,n, r]
q

//S[m− 1, n, r]
p

//S,

with p and q projections, by saying ϕ in C+(S[m,n, r]) will be S-integrable if it is
S[m− 1, n, r]-integrable and q!(ϕ) is S-integrable and setting π!(ϕ) := p!(q!(ϕ)).
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Since there arem different projections S[m,n, r] → S[m−1, n, r], the factorisation
(11.2.1) is not unique, and we have to check this definition is independent of the
factorisation.

By induction it is enough to consider the case (m,n, r) = (2, 0, 0). Using a bicell
decomposition thanks to Proposition 7.4.1 it is enough to prove the following:

11.2.3. Proposition. — Let Z be a bicell in S[2, 0, 0]. Denote by p1 and p2 the
two projections S[2, 0, 0] → S[1, 0, 0]. Then [1Z ] is p1-integrable and p1!([1Z ]) is S-
integrable if and only if [1Z ] is p2-integrable and p2!([1Z ]) is S-integrable. If these
conditions hold, then p!(p1!([1Z ])) = p!(p2!([1Z ])).

Proof. — Let Z be bicell Z ⊂ S[2, 0, 0] with presentation λ : Z → Z ′ = ZC,... ⊂
S[2, n, r]. Let us first note it is enough to prove the statement of the Proposition
when λ is the identity and that, in this case, the integrability conditions are always
satisfied. To check that, let us consider the commutative diagram

Z ⊂ S[2, 0, 0]
p1

wwooooooooooo

λ
//

p2

��?
??

??
??

??
??

??
??

??
??

Z ′ ⊂ S[2, n, r]
p′1

wwoooooooooooo

p′2

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@

S[1, 0, 0]

p

��?
??

??
??

??
??

??
??

??
??

?
S[1, n, r]

p′

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@

µ̃
oo

S[1, 0, 0]

p

wwoooooooooooooo
S[1, n, r]

µ̃
oo

p′wwoooooooooooo

S S[0, n, r]µ
oo .

Note first that [1Z ] is p1-integrable if and only if p′1!([1Z′]) is µ̃-integrable and then
p1!([1Z ]) = µ̃!p

′
1!([1Z′]). Indeed this follows from Proposition-Definition 11.2.2, since

[1Z ] = (λ−1)!([1Z′]). Hence by Proposition-Definition 11.2.2 again, the condition
[1Z ] is p1-integrable and p1!([1Z ]) is p-integrable is equivalent to p′!p

′
1!([1Z′]) is µ-

integrable and then p!p1!([1Z ]) = µ!p
′
!p

′
1!([1Z′]). Since we know that p′!p

′
1!([1Z′]) =

p′!p
′
2!([1Z′]), we can go the other way back, replacing p1 and p′1 by p2 and p′2, in order

to get the required result.
We consider first the case where Z is (1, 1)-bicell. As we just explained, we may

assume Z = ZC,α,β,ξ,η,c,d, the definable subassignment of S×hA1
k((t))

×hA1
k((t))

defined

by

y ∈ C

ord(z − d(y, u)) = α(y)

ac(z − d(y, u)) = ξ(y)

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y),
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where y denotes the S-variable, z the first A1
k((t))-variable and u the second A1

k((t))-

variable. Furthermore, either d(y, u) is a function of y or d(y, u) is injective as
a function of u for every y in C. As we shall see, in this case, the integrability
conditions in the statement of Proposition 11.2.3 are always satisfied. First let us
note that [1Z ] is p2-integrable and that p2!([1Z ]) = [1Z2 ]L

−α−1 with Z2 the 1-cell

y ∈ C

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y).

It follows that p2!([1Z ]) is p-integrable and p!(p2!([1Z ])) = L−α−1L−β−1[1C ].
If d(y, u) is constant as a function of u, our (1, 1)-cell is a product of 1-cells

and the result is clear. Let us assume d(y, u) is injective as a function of u. After
performing still another cell decomposition to the graph of d(y, u), which is allowed,
by the very argument used to prove we can assume λ is the identity, we may assume
the order of the jacobian of d(y, u), viewed as a function of the variable u only, is
the form γ(y), with γ a function of y only (and not of u).

To compute p!(p1!([1Z ])), we shall first prove the following special case.

11.2.4. Lemma. — With the previous notations, consider the definable subassign-
ment Z of S × hA1

k((t))
× hA1

k((t))
defined by

y ∈ C

ord(z − u) = α(y)

ac(z − u) = ξ(y)

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y).

Then [1Z ] is integrable rel. p1 and p2, p1!([1Z ]) and p2!([1Z ]) are S-integrable and
p!(p1!([1Z ])) = p!(p2!([1Z ])).

Proof. — By partitioning C we may assume we are in one of the following 4 cases.
If β > α on C, then Z may be rewritten as

y ∈ C

ord(z − c(y)) = α(y)

ac(z − c(y)) = ξ(y)

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y),
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which is a product of 1-cells and the result is clear. Similarly, if β < α, resp. β = α
and ξ + η 6= 0, Z may be rewritten as

y ∈ C

ord(z − u) = α(y)

ac(z − u) = ξ(y)

ord(z − c(y)) = β(y)

ac(z − c(y)) = η(y),

and

y ∈ C

ord(z − c(y)) = α(y)

ac(z − c(y)) = ξ(y) + η(y)

ord(u− c(y)) = α(y)

ac(u− c(y)) = η(y),

respectively. Finally, if β = α and ξ + η = 0, Z may be rewritten as

y ∈ C

ord(z − c(y)) > α(y)

ord(u− c(y)) = α(y)

ac(u− c(y)) = η(y),

in which case the result is also quite clear.

Now, we want to compute p1!([1Z ]). Let consider the image W of

y ∈ C

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y)

by (y, u) 7→ (y, u′ = d(y, u)). We denote by Z ′ the subassignement

ord(z − u′) = α(y)

ac(z − u′) = ξ(y)

(y, u′) ∈W.

By Proposition 9.3.2 (change of variable formula in relative dimension 1), p1!([1Z ])
is equal to p1!([1Z′])Lγ . On the other hand, after applying cell decomposition to
W , which as we already remarked is allowed here, we deduce from Lemma 11.2.4
that [1Z′] is integrable rel. p1 and p2, p1!([1Z′]) and p2!([1Z′]) are S-integrable and
p!(p1!([1Z′])) = p!(p2!([1Z′])). But p!(p2!([1Z′])) is quite easy to compute, being
nothing else than L−α−1µS(W ). Hence we get that

p1!([1Z ]) = L−α−1µS(W )Lγ .
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Since µS(W ) = L−γL−β−1[1C ], by Proposition 9.3.2 again, it follows finally that

p1!([1Z ]) = L−α−1L−β−1[1C ],

as required.
We consider now the case of a bicell of type (0, 1). As above, we may assume

Z = Z ′
C,β,γ,η,c,d is

y ∈ C

z = d(y, u)

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y).

Furthermore, either d(y, u) is a function of y or d(y, u) is injective as a function of u
for every y in C. If d(y, u) is constant as a function of u, our (0, 1)-cell is a product
of a 0-cell and a 1-cell and the result is clear. Let us assume d(y, u) is injective
as a function of u. As we already remarked, we may perform still another cell
decomposition to the graph of d(y, u) in order to assume the order of the jacobian
of d(y, u), viewed as a function of the variable u only, is a the form γ(y), with γ a
function of y only.

The projection p1 induces a definable bijection λ1 : Z → Z1 between Z and

its image Z1. By definition, p1!([1Z ]) = Lordjacλ1◦λ
−1
1 [1Z1 ]. Similarly, p2 induces a

definable bijection λ2 : Z → Z2, with Z2 defined by

y ∈ C

ord(u− c(y)) = β(y)

ac(u− c(y)) = η(y)

and p2!([1Z ]) = Lordjacλ2◦λ
−1
2 [1Z2 ].

Set λ : λ1 ◦ λ
−1
2 : Z2 → Z1. It is induced by (y, u) 7→ (y, d(y, u)), hence ordjacλ =

γ(y) depends only on y. After considering a cell decomposition of Z2 adapted to
(some representative of) ordjacλ2 ◦ λ

−1
2 , which as we already remarked is allowed,

we may assume ordjacλ2 ◦ λ
−1
2 also depends only on y, so that there exists some

function µ2 on C such that p∗µ2 = ordjacλ2 ◦ λ
−1
2 (allmost everywhere). By the

chain rule (Proposition 8.4.1), it follows there would also exist a function µ1 on C
such that p∗µ1 = ordjacλ1 ◦ λ

−1
1 (allmost everywhere), and they would satisfy the

relation

(11.2.2) µ1 = γ + µ2.

By the projection formula, which is valid in this case by construction, we have

p!p1!([1Z ]) = Lµ1p!([1Z1 ])

and
p!p2!([1Z ]) = Lµ2p!([1Z2]).

Since
p!([1Z2]) = Lγp!([1Z1 ])
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by Proposition 9.3.2, we deduce the required result by (11.2.2).
We are now left with the last two cases which are much easier. As above, we may

assume Z = Z ′′
C,α,ξ,c,d or Z = Z ′′′

C,c,d. In both cases the result is clear since Z is a
product of cells.

Let us define ISC+(S[n,m, r]) by induction on n by using a factorisation

(11.2.3) S[m,n, r]
q

//S[m− 1, n, r]
p

//S,

with p and q projections, and saying ϕ in C+(S[m,n, r]) is S-integrable if it is S[m−
1, n, r]-integrable and q!(ϕ) is S-integrable and setting π!(ϕ) := p!(q!(ϕ)). It follows
from Proposition 11.2.3 that these definitions are independent under permutation
of the coordinates on Am

k((t)).

11.3. — We now define ISC+(S × Y ) and π!, with π the projection S × Y → S,
when Y is a definable subassignment of h[m,n, r]. This is done as follows. We denote
by i : S × Y → S[m,n, r] the inclusion and by π̃ the projection S[m,n, r] → S. To
any Function ϕ in Cd

+(S × Y ), we assign the Function ϕ̃ := i!(ϕ) in Cd
+(S[m,n, r]),

which is the “(class of the) Function ϕ extended by zero outside S × Y ”. We shall
say ϕ is S-integrable if ϕ̃ is S-integrable and we shall set π!(ϕ) := π̃!(ϕ̃).

11.4. — Before going further in the construction of π!, we shall state some useful
properties that follow from what we already did in 11.2.

We already have the following form of A0 and A1 for projections:

11.4.1. Proposition. — Consider a diagram a projections

π : S × Y × Z
q

//S × Y
p

//S.

A Function ϕ in C+(S × Y ×Z) is S-integrable if and only if it is S × Y -integrable
and q!(ϕ) is S-integrable. If this holds, then

π!(ϕ) = p!q!(ϕ).

Proof. — One may assume Y and Z are of the form h[m,n, r] and h[m′, n′, r′], re-
spectively. The result then follows by induction from Proposition 11.2.1 and Propo-
sition 11.2.2.

Also the projection formula A3 holds for projections:

11.4.2. Proposition. — Let S and Y be in Defk and let π : S × Y → S denote
the projection. For every α in C+(S), and every β in ISC+(S × Y ), π∗(α)β belongs
to ISC+(S × Y ) and π!(π

∗(α)β) = απ!(β).

Proof. — One may assume Y = h[m,n, r]. If m = 0, the statement follows from the
fact that ISC+(S[0, n, r]) is a C+(S)-module and that µS is C+(S)-linear. The case
m = 1 follows from thecase m = 0 by construction, and the general case is deduced
by induction on m.

We also have the following special case of Theorem 12.1.1:
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11.4.3. Proposition. — Let S and Y be in Defk. Let Z be a definable subassign-
ment of S × Y . Assume the projection π : S × Y → S induces a bijection λ between
Z and S. Then [1Z ], viewed as a Function in C+(S × Y ), is S-integrable and

π!([1Z ]) = Lordjacλ◦λ−1

[1S].

Proof. — We may assume Y = h[m,n, r], so that S × Y = S[m,n, r]. For m = 0,
the result is clear, for m = 1 it follows from construction. The general case is proved
by induction on m using the chain rule Proposition 8.4.1.

11.5. Definable injections. — Let i : X → Y be a morphism in Defk. We shall
assume i is injective, which means i induces a definable bijection γ between X and
i(X).

For every Function ϕ in C+(X), we define a Function i+(ϕ) in C+(Y ) as follows.
We shall define i+ on Cd

+(X), and then extend to the whole C+(X) by linearity. Take
ϕ = [ψ] in Cd

+(X). We can choose a definable subassignment Z of X of dimension
d such that ψ is zero outside Z. The morphism i induces a definable bijection γZ

between Z and i(Z). We define the function ϕ̃ on Y to be 0 outside i(Z) and to

be equal to (γ−1
Z )∗(ψ) on i(Z). The Function LordjacγZ◦γ−1

Z ϕ̃ is independent of the
choice of Z, we denote it by i+(ϕ).

In fact we shall see later (cf. Proposition 12.1.2) that i+ is nothing else than i!.
This gives support to the following:

11.5.1. Proposition. — Let i : X → Y and j : Y → Z be morphisms in Defk.
Assume the morphims i and j are injective. Then (j ◦ i)+ = j+ ◦ i+.

Proof. — Follows directly from Proposition 8.4.1.

We shall need later the following:

11.5.2. Lemma. — Let i : Y → W be an injective morphism in Defk, and con-
sider the commutative diagram

X × Y

π

��

idX×i
// X ×W

π
��

Y
i

// W,

where π denotes the projections. A Function ϕ in C+(X × Y ) is Y -integrable if and
only if (idX × i)+(ϕ) is π-integrable. When these conditions hold, we have

π!((idX × i)+(ϕ)) = i+(π!(ϕ)).

Proof. — We may assume X = h[m,n, r], so that X×Y = Y [m,n, r]. When m = 0,
the statement follows from Proposition 5.8.6. Let us now consider the case m = 1,
n = r = 0. Take ϕ in C+(Y [1, 0, 0]) and consider a cell decomposition Z of adapted
to (some representative of) ϕ. Note that the image of Z in W [1, 0, 0] is adapted
to (idX × i)+(ϕ). The result now follows from the construction of π! made in § 9
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using Proposition 8.4.1. The general case follows by induction using Proposition
11.4.1.

11.6. Push-forward for the structural morphism. — Let f : X → S be a
morphism in DefS.

We consider the following canonical factorisation of f :

X
if

//X × S
πf

//S,

where if is the graph morphism x 7→ (x, f(x)) and πf the canonical projection. The
graph morphism if induces a definable bijection γf between X and the graph of f ,
Γf := if(X).

We shall say a Function ϕ in C+(X) is S-integrable if if+(ϕ) is S-integrable.
When this holds we shall set

f!(ϕ) := πf !(if+(ϕ)).

One should first check that when f is a projection, one recovers the previous
definitions:

11.6.1. Lemma. — If f : Y × S → S is the projection on the second factor, then
the above definitions coincide with the ones in 11.3.

Proof. — Let us first consider the case when f is the identity idS. It then follows
from Proposition 11.4.3 applied to the projection ΓidS

→ S, that, for every Function
ϕ in C+(S), iidS+(ϕ) is S-integrable and that πidS ! ◦ iidS+ is the identity. For the
general case, let us consider the commutative diagram

Y × S

f

��

if
// Y × S × S

π

��
πf

��

S
iidS

//

id
&&NNNNNNNNNNNNNN S × S

πidS

��

S.

By Lemma 11.5.2, a Function ϕ in C+(Y × S) is S-integrable if and only if if+(ϕ)
is S × S-integrable, and if this is the case, then

π!if+(ϕ) = iidS+f!(ϕ),

so that

πidS !π!if+(ϕ) = πidS !iidS+f!(ϕ)

and

πf !if+(ϕ) = f!(ϕ).
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11.7. Push-forward: the general case. — We start from a morphism f : X →
Y in DefS, that is, a commutative diagram

X
f

//

h ��@
@@

@@
@@

Y

g
����

��
��

�

S

In 11.6 we defined a morphism f! : IYC+(X) → IYC+(Y ). By the following
Proposition 11.7.1, f! restricts to a morphism ISC+(X) → ISC+(Y ) that we shall
still denote by f!.

11.7.1. Proposition. — A Function ϕ in C+(X) is S-integrable if and only if it is
Y -integrable and f!(ϕ) is S-integrable. If these conditions hold then h!(ϕ) = g!f!(ϕ).

Proof. — We have the following commutative diagram:

X × S

if×idS

��

πh

~~

X
f

##G
GG

GG
GG

GG
G

ih
00

h 22

if
// X × Y

πf

��

idX×ig
// X × Y × S

π

��

Y
ig

//

g
''OOOOOOOOOOOOOO Y × S

πg

��

S

with π the projection on the last two factors.
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Let ϕ be a Function in C+(X). The following conditions are equivalent:

ϕ is f -integrable and f!(ϕ)is g-integrable

if+(ϕ) is πf -integrable and ig+πf !if+(ϕ)is πg-integrable

(by Definition)

(idX × ig)+if+(ϕ) is π-integrable and π!(idX × ig)+if+(ϕ)is πg-integrable

(by Lemma 11.5.2)

(if × idS)+ih+(ϕ) is π-integrable andπ!(if × idS)+ih+(ϕ)is πg-integrable

(by Lemma 11.5.1)

(if × idS)+ih+(ϕ) is S-integrable

(by Proposition 11.4.1)

ih+(ϕ) is πh-integrable

(by Lemma 11.7.2)

ϕ is h-integrable

(by Definition).

This proves the first statement in the Proposition.
Assume now the previous conditions hold. We have

g!f!(ϕ) = πg!ig+πf !if+(ϕ) (by Definition)

= πg!π!(idX × ig)+if+(ϕ) (by Lemma 11.5.2)

= (πg ◦ π)!(idX × ig)+if+(ϕ) (by Proposition 11.4.1)

= (πg ◦ π)!(if × idS)+ih+(ϕ) (by Lemma 11.5.1)

= πh!ih+(ϕ) (by Lemma 11.7.2)

= h!(ϕ) (by Definition).

11.7.2. Lemma. — Let f : X → Y be a morphism in Defk, let S be in Defk, and
consider the commutative diagram

X × S

π

��

if×idS
// X × Y × S

π
��

S S,

where π denotes the projection. A Function ϕ in C+(X × S) is S-integrable if and
only if (if × idS)+(ϕ) is S-integrable. If this holds, then π!(ϕ) = π!((if × idS)+(ϕ)).

Proof. — We consider the commutative diagram

X × Y × S
p

''NNNNNNNNNNN

X × S

if×idS

88ppppppppppp
id

// X × S,
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with p the projection. Consider Z := (if × idS)(X × S). The projection p induces
an isomorphism λ between Z and X × S. It follows from Proposition 11.4.3 that
[1Z ] is X × S-integrable and that p!([1Z ]) = Lordjacλ◦λ−1

[1X×S], hence, by the very
definition of if+ and by Proposition 8.4.1, we obtain that p!(if × idS)+([1X×S]) =
[1X×S]. Now, for a general Function ϕ in in C+(X × S), we get similarly that
(if × idS)+(ϕ) is p-integrable and that p!(if × idS)+(ϕ) = ϕ, after maybe replacing
Z by a definable subassignment of smaller dimension. So, p!(if×idS)+ is the identity,
hence to conclude the proof it is enough to compose with π! and to apply Proposition
11.4.1.

11.8. Conclusion of the proof. — Now we have everything in hand needed to
check Axioms A0-9. Axiom A0 follows at once from Proposition 11.7.1. Statements
(a) and (b) in A1 are clear by construction. Since A2 and A4 hold by construction for
π!, when π is a projection and for i+, when i is a definable injection, it follows they
hold in general. Similarly, A3 holds for π!, when π is a projection, by Proposition
11.4.2 and for i+, when i is a definable injection, by construction, hence it holds
in general. The remaining axioms A5-8 follow from the very constructions and
definitions.

12. Main properties

Recall in this section, and until section 15, all definable subassignments belong
to Defk, so in particular they are affine.

12.1. Change of variable formula. — We can now state the general form of
the change of variable formula.

12.1.1. Theorem. — Let f : X → Y be a definable bijection between definable
subassignments of K-dimension d. Let ϕ be in C≤d

+ (Y ) of K-dimension d. Then
[f ∗(ϕ)] belongs to IYC

d
+(X) and

f!([f
∗(ϕ)]) = Lordjacf◦f−1

[ϕ].

Proof. — By Proposition 12.1.2, [1X ] is Y -integrable and f!([1X ]) = Lordjacf◦f−1
[1Y ].

The result follows, since by A1(b) and the projection formula A3, [f ∗(ϕ)] =
f ∗(ϕ)[1X ] is Y -integrable and f!([f

∗(ϕ)]) = ϕf!([1X ]).

12.1.2. Proposition. — Let j : X → Y be a definable injection. Then
IYC+(X) = C+(X) and j+ = j!.

Proof. — We factor j as

X
ij

//

j
  @

@@
@@

@@
@

X × Y

πj
{{ww

www
ww

ww

Y
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Using compatibility with inclusions A4 and the projection formula A3 it is enough
to prove that ij+([1X ]) is Y -integrable and that j+([1X ]) = πj! ◦ ij+([1X ]). This
follows from Proposition 11.4.3 and Proposition 8.4.1.

12.2. Integrability of bounded Functions and subassignments. — Let X
be in Defk. Let ϕ and ϕ′ be Functions in C+(X). We write ϕ ≤ ϕ′ if there exists a
Function ψ in C+(X) such that ϕ′ = ϕ+ ψ.

12.2.1. Theorem. — Let f : X → S be a morphism in Defk. Let ϕ and ϕ′ be
Functions in C+(X) such that ϕ ≤ ϕ′. If ϕ′ is S-integrable, then ϕ is S-integrable.

Proof. — The statement being clear when f is an injection, we assume f is a pro-
jection f : X = S[m,n, r] → S. When m = 0 the result is quite clear, hence it is
enough by induction to consider the case (m,n, r) = (1, 0, 0) which follows directly
from Proposition 9.3.1.

We shall say a subassignment Z of h[m,n, 0] is bounded if there exists a natural
number s such that Z is contained in the subassignment Ws of h[m,n, 0] defined by
ordxi ≥ −s, 1 ≤ i ≤ m.

12.2.2. Proposition. — If Z is a bounded definable subassignment of h[m,n, 0],
then [1Z ] is integrable. More generally, let ϕ be a Function in C+(Z) of the form
a ⊗ αLβ[1Z ] with a in SK0(RDefZ), α a product of Z-valued definable functions
on |Z| and β a Z-valued definable function on |Z|. Assume Z is bounded and the
function β is bounded above. Then ϕ is integrable.

Proof. — Assume Z is ofK-dimension d. We shall prove the more general statement
by induction on the codimension m− d, assuming α is also bounded above. There
exists a closed k((t))-subvariety X of dimension d of Am

k((t)) such that Z is contained

in (hX × hAn
k
) ∩Ws.

When m = d, [1Z ] ≤ [1Ws
]. Certainly [1Ws

] is integrable and µ([1Ws
]) = L−s, as

can be seen by using a cell decomposition similar to the one in Example 7.2.2. Also

any Function of the form a⊗ α̃Lβ̃ [1Ws
] with a in SK0(RDefWs

), α̃ and β̃ constant
positive number is integrable, hence the statement follows from Theorem 12.2.1 in
this case.

Assume now m > d. After performing a linear change of coordinates on Am
k((t)),

which we are allowed to do by Theorem 12.1.1, we may assume the projection
Am

k((t)) → Am−1
k((t)) on the first m− 1 coordinates restricts to a finite morphism on X .

Denote by Z ′ the image of Z under the projection p : Z → h[m − 1, n, 0]. Note
that Z ′ is bounded. Using a cell decomposition adapted to ϕ, one may assume Z is
a cell (necessarily a 0-cell) adapted to ϕ. By the induction hypothesis it is enough
to prove that [1Z ] is p-integrable and that p![1Z ] is of the form a′ ⊗ α′Lβ′

[1Z′ ] with
a′ in SK0(RDefZ′) and α′ and β ′ bounded above Z-valued definable functions on
Z ′. Let λ : Z → ZC be a presentation of Z and consider the projections p′ : ZC →
C ⊂ h[m − 1, n + n′, 0] and π : C → Z ′. Since the image by π! of a Function
of the above form has a similar form, we may in fact assume Z = ZC , Z ′ = C
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and p = p′, that is we may assume p induces an isomorphism between Z and Z ′.
Since some representative of ordjacp is bounded above on Z ′, it follows from A8, or
Theorem 12.1.1, that p!([1Z ]) = Lβ[1Z′] with β bounded above on Z ′, which finishes
the proof in this case. Let us now consider the case where α is no more assumed to
be bounded. For n in Z, set Zn = α−1(n) and consider ϕn := 1Zn

ϕ. By what we
already proved ϕn is integrable and also the Function ψ := a⊗Lβ [1Z ]. Since we may
factor the projection of Z → h[0, 0, 0] as the composition of α : Z → h[0, 0, 1] with
h[0, 0, 1] → h[0, 0, 0], it follows that the function n 7→ µ(ϕn) is integrable on Z. By
Proposition 4.6.2 we may write n 7→ µ(ϕn) as a finite sum of functions of the form
d⊗ fn with d in SK0(RDefk) and fn in P(h[0, 0, 1]) with lim|n|→∞ degL(fn) = −∞.
But then also lim|n|→∞ degL(nfn) = −∞, hence by Proposition 4.6.2 the function
n 7→ nµ(ϕn) is integrable on Z, and one deduces that ϕ is integrable.

13. Integration of general constructible motivic Functions

13.1. From C+(X) to C(X). — In this section we shall denote by ι the canonical
morphisms ι : C+(X) → C(X) and ι : C+(X) → C(X) for X in Defk.

13.1.1. Proposition. — Fix S in Defk. Let f : X → Y be a morphism in DefS.
Let ϕ and ϕ′ be Functions in C+(X) such that ι(ϕ) = ι(ϕ′). Assume ϕ and ϕ′ are
S-integrable. Then ι(f!(ϕ)) = ι(f!(ϕ

′)).

Proof. — It is enough to prove the statement for f an injection or a projection.
When f is an injection the proof is quite clear. Indeed, if ι(ϕ) = ι(ϕ′), we have
ϕ + ψ = ϕ′ + ψ with some ψ in C+(X) which might be not S-integrable, but is
certainly f -integrable (since all Functions in C+(X) are). It follows that f!(ϕ) +
f!(ψ) = f!(ϕ

′) + f!(ψ), which is enough for our needs. Let us now assume f is a
projection. We may assume f is the projection X = S[m,n, r] → Y = S. The
case (m,n) = (0, 0) follows directly from Lemma 13.1.2 and the case (m, r) = (0, 0)
is clear, so we know the statement holds for X = S[0, n, r], and by induction it is
enough to prove it also holdsX = S[1, n, r]. If ϕ+ψ = ϕ′+ψ. It is enough to consider
the case where ϕ, ϕ and ψ all lie in Cd

+(x). We may assume, using cell decompostion,
that ϕ, ϕ′ and ψ have their support contained in a cell λ : Z → ZC , with Z of K-
dimension d, and that ϕ = λ∗p∗(f)[1Z ], ϕ′ = λ∗p∗(f ′)[1Z ] ψ = λ∗p∗(g)[1Z ], with
f , f ′ and g in C+(C), where p denotes the projection ZC → C ⊂ S[0, n + n′, r +
r′]. In particular, we have [f ] + [g′] = [f ′] + [g′], hence fp!([1Z ]) + gp!([1Z ]) =
f ′p!([1Z ])+gp!([1Z ]). Since fp!([1Z ]) and f ′p!([1Z ]) are S-integrable by construction,
it follows from what we already proved that, ι(π!(fp!([1Z ]))) = ι(π!(f

′p!([1Z ]))),
hence ι(f!(ϕ)) = ι(f!(ϕ

′)).

13.1.2. Lemma. — We use notation from section 5. Let ϕ and ϕ′ be S-integrable
functions in C+(S[0, 0, r]). Assume ϕ + ψ = ϕ′ + ψ for some function ψ in
C+(S[0, 0, r]). Then ι(µS(ϕ)) = ι(µS(ϕ′)).
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Proof. — By Proposition 5.8.4, it is enough to consider the case r = 1. The result
being clear if ψ is S-integrable, it is enough to prove we may replace ψ by some
other function ψ′ in C+(S[0, 0, 1]) which is S-integrable. We write ψ =

∑
i ciψi,

with ci in C+(S) and ψi in P+(S[0, 0, r]). For (s, x) in |S| × Zr, we may write
ψi(s, x) =

∑
j αi,j(s, x)L

δi,j(s,x), with αi,j(s, x) and δi,j(s, x) in Z. In fact, after

maybe adding some other function in C+(S[0, 0, 1]) to ψ, we may assume all functions
αi,j(s, x) take their values in N>0. Also, by Presburger cell decomposition Theorem
4.3.2, we may assume all functions ai,j and δi,j, have their support in some S-cell Z

and that δi,j is S-linear, that is, of the form (4.1.1) δi,j(s, x) = ai,j(
x−ci,j

ni,j
)+γi,j(s). If

Z is of type (0), ψ is S-integrable and there is nothing to do. When Z is of type (1),
we consider ψ′

i =
∑

j|ai,j≤0 αi,jL
δi,j and we set ψ′ =

∑
i ciψ

′
i. By construction ψ′ is S-

integrable. Also we have ϕ+ ψ′ = ϕ′ +ψ′. Indeed, write ϕ =
∑

i biϕi, ϕ
′ =

∑
i b

′
iϕ

′
i,

with bi, b
′
i and ci in C+(S), ϕi and ϕ′

i S-integrable functions in P+(S[0, 0, r]). By
taking a finer Presburger cell decomposition, we may assume each ϕi is of the form
ϕi =

∑
j βi,jL

µi,j with µi,j S-linear on Z of the form bi,j(
x−ci,j

ni,j
) + λi,j(s), with all

bi,j ≤ 0 by the integrability hypothesis, and similarly for ϕ′. It is then clear that
the relation ϕ+ ψ′ = ϕ′ + ψ′ holds.

13.2. — Fix S in Defk. Let X be in DefS. We shall say a Function ϕ in C(X) is
S-integrable if it may be written as

(13.2.1) ϕ = ι(ϕ+) − ι(ϕ−),

with ϕ+ and ϕ− both S-integrable Functions in C+(X). We denote by ISC(X) the
graded subgroup of S-integrable Functions. If f : X → Y is a morphism in DefS

and ϕ is in ISC(X), we set

(13.2.2) f!(ϕ) = ι(f!(ϕ+)) − ι(f!(ϕ−)),

with ϕ+ and ϕ− in ISC+(X) satisfying (13.2.1). By Proposition 13.1.1, this is
independent of the choice of ϕ+ and ϕ−. We define in this way a morphism of
abelian groups

f! : ISC(X) −→ ISC(Y ).

Furthermore, if g : Y → Z is another morphism in DefS, (g ◦ f)! = g! ◦ f!. When f
is the morphism to hSpec(k), we write µ(ϕ) for the element f!(ϕ) in C(hSpec(k)).

13.2.1. Proposition. — The following properties of f! hold:

(1) Additivity and compatibility with inclusions: Axioms A2 and A4 of Theorem
10.1.1 are satisfied if one replaces C+ and C+ by C and C, respectively.

(2) Projection formula: If f : X → S is a morphism in Defk, α is in C(S) and β
is in ISC(X), then f ∗(α)β is S-integrable and

f!(f
∗(αβ)) = αf!(β).

(3) Let π be the projection π : S[0, n, 0] → S with S in Defk. Let ϕ be in
C(S[0, n, 0]). Then [ϕ] is S-integrable and π!([ϕ]) = [π!(ϕ)], π! being defined
as in 5.6.
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(4) Let π be the projection π : S[0, 0, n] → S with S in Defk. Let ϕ be in
C(S[0, 0, n]). Then [ϕ] is S-integrable if and only if there is a function ϕ′

in C(S[0, 0, n]) with [ϕ′] = [ϕ] such that ϕ′ is π-integrable in the sense of 5.7.
Furthermore, when this holds, π!([ϕ]) = [µS(ϕ′)].

Proof. — The first three assertions follow directly from the corresponding state-
ments for positive Functions. The last one follows directly from Lemma 13.1.2.

The following statement is a direct consequence of Theorem 12.1.1.

13.2.2. Theorem (Change of variable formula). — Let f : X → Y be a de-
finable bijection between definable subassignments of K-dimension d. Let ϕ be in
C≤d(Y ) having a non zero class [ϕ] in Cd(Y ). Then [f ∗(ϕ)] is in IYC

d(X) and

f!([f
∗(ϕ)]) = Lordjacf◦f−1

[ϕ].

14. Integrals with parameters

Recall in this section, and until section 15, all definable subassignments belong
to Defk, so in particular they are affine.

14.1. — In this section we consider the relative version of Theorem 10.1.1. By this
we mean the construction of a theory for integrals with parameters in a definable
subassignment Λ. One of the great advantage of our proof of Theorem 10.1.1 is that
it carries literally to the relative case.

Let us fix Λ in Defk. We introduce the subcategory Def ′Λ of DefΛ whose objects
are definable subassigments S of some Λ[m,n, r], the morphism p : S → Λ being
induced by the projection to Λ. For a given S in Def ′Λ, we denote by Def ′S,Λ the

category whose objects are morphisms Z → S in Def ′Λ. To any object f : S → Λ in
DefΛ one may assign its graph Γf → Λ in Def ′Λ. This yields a functor Γ : DefΛ →
Def ′Λ which is quasi-inverse to the inclusion functor Def ′Λ → DefΛ leading to an
equivalence of categories between Def ′Λ and DefΛ. More generally the functor Γ
induces a equivalence of categories Φ between DefS and Def ′Γ(S),Λ, for every S in
Def)Λ, which is compatible with ordjacΛ.

14.1.1. Theorem. — Let Λ be in Defk. Let S be in DefΛ, resp. in Def ′Λ. There
is a unique functor from the category DefS, resp. Def ′S,Λ,to the category of abelian
semigroups, Z 7→ ISC+(Z → Λ), assigning to every morphism f : Z → Y in DefS,
resp. in Def ′S,Λ, a morphism f!Λ : ISC+(Z → Λ) → ISC+(Y → Λ) and satisfying the
axioms similar to A0-A8 of Theorem 10.1.1 replacing ISC+( ) by ISC+( → Λ) with
the following changes:

In A0 (b) λ should be a morphism in DefS, resp. in Def ′S,Λ. In A8′, one should
replace the function ordjac by the relative function ordjacΛ, as defined in 8.5.

Furthermore, the relative analogue of Theorem 12.1.1 also holds, and the con-
structions are compatible with the equivalence of categories Φ between DefS and
Def ′Γ(S),Λ.
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Proof. — It is enough to prove the Theorem in the resp. setting. The non resp.
case follows by using the equivalence Φ which is compatible with ordjacΛ, see also
the end of 8.5. Our proofs of Theorem 10.1.1 and of Theorem 12.1.1 in the absolute
setting has been designed in order to generalize verbatim to the present relative set-
ting, with the following changes: replace everywhere absolute dimensions by relative
dimensions; replace everywhere ordjac by its relative analogue ordjacΛ.

14.2. — When π : Z → Λ is the morphism to the final object in DefΛ, we write
IC+(Z → Λ) instead of IΛC+(Z → Λ). We also denote by µΛ the morphism

π!Λ : IC+(Z → Λ) → C+(Λ → Λ) = C+(Λ).

We call it the relative motivic measure. By Corollary 14.2.2 it corresponds to inte-
grating along the fibers of Λ. One should remark the notation is compatible with
the one introduced in 5.7 and 9.

Let Z be in DefΛ. For every point λ of Λ, we denote by Zλ the fiber of Z at λ, as
defined in 2.6. We have a natural restriction morphism i∗λ : C+(Z → Λ) → C+(Zλ).

14.2.1. Proposition. — Let f : Z → Y be a morphism in DefΛ. Let ϕ be a
Function in C+(Z → Λ). Then ϕ is f -integrable if and only if, for every point λ of
Λ, i∗λ(ϕ) is fλ-integrable. Furthermore, when these conditions hold

i∗λ(f!Λ(ϕ)) = fλ!(i
∗
λ(ϕ)),

for every point λ of Λ, where fλ : Zλ → Yλ is the restriction of f to the fiber Zλ.

Proof. — It is enough to prove the statement for injections and projections. The
case of injections being clear let us consider that of projections. It is enough to
consider the case of projections along one sort of variables and the only case which
is not a priori clear is that of a projection Z = Y [0, 0, r] → Y which follows directly
from Corollary 5.8.2.

In particular we have the following:

14.2.2. Corollary. — Let f : Z → Λ be in DefΛ. Let ϕ be a Function in C+(Z →
Λ). Then ϕ is integrable if and only if for every point λ of Λ, i∗λ(ϕ) is in IC+(Zλ).
If these conditions hold, then

i∗λ(µΛ(ϕ)) = µλ(i
∗
λ(ϕ)),

for every point λ of Λ, where µλ denotes the motivic measure on Defk(λ).

14.3. — Let us now describe the behaviour of µΛ under base change. Consider
u : T → Λ a morphism in DefΛ and denote by X ×Λ T the corresponding fiber
product and by π′ the projection π′ : X ×Λ T → T .

The following statement is clear by construction:

14.3.1. Proposition. — Let ϕ be an element of C+(Z) such that [ϕ] belongs to
IC+(Z → Λ). Then [u∗(ϕ)] belongs to IC+(X ×Λ T → T ) and u∗(µΛ([ϕ])) =
µT ([u∗(ϕ)]).
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14.3.2. Remark. — Let π : Z → Λ be a morphism in DefΛ. In general the
elements µΛ(ϕ) and π!(ϕ) may be quite different. For instance assume π is an

isomorphism, then µΛ([1Z ]) = 1Λ, while π!([1X ]) = Lordjacπ◦π−1
[1Λ]. One should

remark in this case [1Z ] is of degree 0 in C+(Z → Λ), since the relative K-dimension
is 0, while [1Z ] is of maximal degree in C+(Z). Of course, if Λ is a subassigment of
hAm

k
×Zr then µΛ(ϕ) = π!(ϕ) whenever this makes sense. Also, if we have a morphism

π′ : Λ → T in Defk, in general µT ([µΛ(ϕ)]) 6= µT (ϕ).

14.4. — Let X be in DefΛ. The canonical morphism ι : C+(X) → C(X) induces
a morphism ι : C+(X → Λ) → C(X → Λ) for which the analogue of Proposition
13.1.1 holds. This allows us, for S in DefΛ and X in DefS, to define ISC(X → Λ) as
in (13.2.1), and for f : X → Y a morphism in DefS, to define f!Λ : ISC(X → Λ) →
ISC(Y → Λ) and µΛ : IC(X → Λ) → C(Λ) as in 13.2.

The relative analogues of Proposition 13.2.1 and Theorem 13.2.2 hold in this
setting with similar proofs.

14.5. Rationality theorems. — Now we can state the following general ratio-
nality theorem.

14.5.1. Theorem. — Let π : Z → Λ × Nr be a morphism in Defk, Nr being
considered as a definable subassignment of hZr . For every ϕ in IC(Z → Λ × Nr),
the Poincaré series

Pϕ,π(T ) :=
∑

n∈Nr

µΛ(ϕ|π−1(Λ×{n}))T
n

belongs to C(Λ)[[T1, · · · , Tr]]Γ.

Proof. — By construction the function Φ := µΛ×Nr(ϕ) belongs to C(Λ × Nr). By
Proposition 14.3.1, its restriction Φn to C(Λ × {n}) satisfies Φn = µΛ(ϕ|π−1(Λ×{n})),
hence the result follows from Theorem 5.7.1.

Let us give an example of application of the above result. Let g : X → Λ be a
morphism in Defk, and consider a morphism f : X → hA1

k((t))
. For n ≥ 1, we denote

by Xn the definable subassignment of X defined by

Xn(K) =
{
x ∈ X(K)

∣∣∣ ordf(x) = n
}
,

for K a field containing k. We denote by fn : Xn → hGm,k
the morphism given by

x 7→ ac(f(x)). By taking the product of morphisms g and fn we get a morphism
Xn → Λ × hGm,k

. Here Gm,k is A1
k \ {0}, the affine line minus the origin. For ϕ in

IC(X → Λ) we consider the generating series

Pf,ϕ(T ) :=
∑

n>0

µΛ×hGm,k
(ϕ|Xn

)T n.

By Theorem 14.5.1, Pf,ϕ(T ) belongs to C(Λ× hGm,k
)[[T ]]Γ, hence is a rational series

in T . This example encompasses motivic analogues of rationality results for p-adic
Igusa and Serre series (cf. [8] and [9]).
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14.6. Application to ramification. — In this section we shall apply the pre-
ceding results to the study of the behaviour of the motivic measure under the ram-
ification t 7→ t1/e. We still assume the language is LDP,P. If ϕ is a formula with
coefficients in R((t)) in the valued field sort and coefficients in R in the residue field
sort, with m free variables in the valued field sort, n in the residue field sort and r in
the value group sort and e is an integer ≥ 1, we denote by ϕ(e) the formula obtained
by replacing t by te in every occurence of t in ϕ. For instance, if ϕ is the formula
∃x ord(ty + t3 − x5) ≥ 2, ϕ(e) is the formula ∃x ord(tey + t3e − x5) ≥ 2. We denote

by Z(e) = Z
(e)
ϕ the subassignment defined by ϕ(e). Hence to the single formula ϕ we

may associate the family (Z
(e)
ϕ ), e ∈ N>0, of definable subassignments of h[m,n, r].

We call such a family the (e)-family of definable subassignments defined by ϕ. A
family of morphism f (e) : Z(e) → Y (e) will be called a morphism between (e)-families
Z(e) and Y (e) if the family Graphf (e) is an (e)-family of definable subassignments
defined by some formula. We denote by π(e) : Z → Λ = h[0, n, r] the projection onto

the last factors. We also consider a morphism of (e)-families α(e) : Z(e) → h
(e)
Z = hZ

defined by some formula ψ.

14.6.1. Proposition. — With the above notation assume that the coefficients of
ϕ and ψ in the valued field sort all belong to k[t]. Assume also that all morphisms

α(e) take their values in N Then, for every e, [1Z(e)L−α(e)
] belongs to IC+(Z(e) →

Λ) and there is a function Φ in C+(N>0 × Λ) such that Φ|{e}×Λ coincides with

µΛ([1Z(e)L−α(e)
]) for every e > 0. Here we view N>0×Λ as a definable subassignment

of hZ × Λ.

Proof. — The fact that [1Z(e)L−α(e)
] belongs to IC+(Z(e) → Λ) for every e follows

from Proposition 12.2.2and Proposition 14.2.1. We introduce an additional variable
ϑ in the valued field sort and replace every occurence of t in ϕ and ψ by ϑ, to get
formulas ϕ̃ and ψ̃. The formula ϕ̃ defines a definable subassignment Z̃ of h[m +

1, n, r]. We set Λ̃ := Λ[1, 0, 0] and denote by π̃ the projection Z̃ → Λ̃. Similarly

ψ̃ defines a morphism α̃ : Z̃ → hZ. It follows again from Proposition 12.2.2and
Proposition 14.2.1. that [1Z̃L−α̃] belongs to IC+(Z̃ → Λ̃). Hence, by 14.2, we get

may set Θ := µΛ̃([1Z̃L−α̃]) in C(Λ̃). By Proposition 14.3.1, for every e, i∗ϑ=te(Θ) =

µΛ([1Z(e)L−α(e)
]). Hence the statement follows from Lemma 14.6.2, which is easily

proved, using cell decomposition.

14.6.2. Lemma. — Let Λ in Defk and set Λ̃ := Λ[1, 0, 0]. Let Θ belong to C+(Λ̃).
There exists a unique function Φ in C+(N>0 × Λ) such that Φ|{e}×Λ coincides with
i∗ϑ=te(Θ) for every e > 0.

14.6.3. Theorem. — Assume the notation and assumptions of Proposition 14.6.1.
Then the series ∑

e>0

µΛ(ι([1Z(e)L−α(e)

]))T e

belongs to C(Λ)[[T ]]Γ.
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Proof. — Follows directly from Proposition 14.6.1 and Theorem 14.5.1.

14.6.4. Remark. — The trick of adding a new variable to prove Theorem 14.6.3
was indicated to us by Jan Denef.

III

INTEGRATION ON VARIETIES AND COMPARISON THEOREMS

15. Integration on varieties and Fubini Theorem

15.1. Integrable volume forms. — Let S be a definable subassignment of
h[m,n, r] of K-dimension d. We shall consider the canonical volume form |ω0|S
which was introduced in Definition-Lemma 8.3.1. We shall also consider the image
of |ω0|S in |Ω̃|(S), that we shall also denote by |ω0|S. Let α be in |Ω̃|+(S), resp.
in |Ω̃|(S). There exists a unique Function ϕα in Cd

+(S), resp. in Cd(S), such that

α = ϕα|ω0|S in |Ω̃|+(S), resp. in |Ω̃|(S). We shall say α is integrable when ψα is
integrable and then set ∫

S

α := µ(ψα)

in C+(hSpec(k)), resp. in C(hSpec(k)).
More generally, if f : S → S ′ is a morphism in Defk such that S and S ′ have

respectively dimension s and s′, we say α in |Ω̃|+(S) if f -integrable if ψα is f -
integrable and then set

f top
! (α) := {f!(ψα)}s′|ω0|S′,

where {f!(ψα)}s′ denotes the component of f!(ψα) in Cs′

+(S ′) (the top dimensional

component). Let us denote by If |Ω̃|+(S) the set of f -integrable positive volume
forms. We have thus defined a canonical morphism

f top
! : If |Ω̃|+(S) −→ |Ω̃|+(S ′).

When S ′ = hSpec k, one recovers the previous construction.
We now want to extend the above construction to the global setting where f :

S → S ′ is a morphism of definable subassignments with S a definable subassignment
of hW , with W = X × X × Zr and S ′ a definable subassignment of hW ′, with
W ′ = X ′×X ′×Zr′ . We still assume S is of K-dimension s and S ′ if of K-dimension
s′.

Let U be an affine open in W , that is, a subset of the form U × O × Zr with
U and O, respectively affine open in X and X. There exists an isomorphism of
varieties ϕ : V → U with V affine open in Am

k((t)) × An
k × Zr inducing the identity

on the Zr-factor. Similarly, let U ′ be an affine open subset of W ′ and assume that
f(S ∩ hU) ⊂ S ′ ∩ hU ′ . We denote by fU : S ∩ hU → S ′ ∩ hU ′ the morphism induced
by f . Choose an isomorphism of varieties ϕ′ : V ′ → U ′ with V ′ affine open in
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Am′

k((t)) ×An′

k × Zr′ , inducing the identity on the Zr′-factor. We denote by ϕ̃ and ϕ̃′

the restriction of ϕ and ϕ′ to ϕ−1(S ∩ hU) and ϕ′−1(S ∩ hU ′), respectively, and by

f̃U : ϕ−1(S ∩ hU) → ϕ′−1(S ∩ hU ′) the morphism such that fU ◦ ϕ̃ = ϕ̃′ ◦ f̃U . We

shall say α in |Ω̃|+(S ∩ hU) if fU -integrable if ϕ̃∗(α) is f̃U -integrable, and we then
define f top

U ! (α) by the formula

(ϕ̃′)∗(f top
U ! (α)) = f̃ top

U ! (ϕ̃∗(α)),

which makes sense since (ϕ̃′)∗ yields an isomorphism between |Ω̃|+(ϕ′−1(S ∩ hU ′)
and |Ω̃|+(S ∩ hU ′). It follows directly from Lemma 15.1.1 that this definition does
not depend on the choice of ϕ and ϕ′.

15.1.1. Lemma. — Let f : S → S ′ be a morphism in Defk . Consider a commu-
tative diagram

S
θ

//

f
��

T

f̃
��

S ′ θ′
// T ′

in Defk, with θ and θ′ isomorphisms. Take α in |Ω̃|+(T ). Then α is f̃ -integrable if
and only if θ∗(α) is f -integrable and then

f top
! (θ∗(α)) = θ′∗(f̃ top

! (α)).

Proof. — This follows directly from the fact that, on Functions, θ′!f! = f̃!◦θ! together
with Theorem 12.1.1 or Proposition 12.1.2.

Now we can handle the general case. We shall say a positive volume form α
in |Ω̃|+(S) is f -integrable if for every affine open subset U in W and every affine
open subset U ′ of W ′ such that f(S ∩ hU) ⊂ S ′ ∩ hU ′ , the restriction α|U of α to

|Ω̃|+(S ∩ hU ) is fU -integrable. If these conditions hold, we consider a finite covering
of W by affine open subsets Ui, i ∈ J , and a finite covering of W ′ by affine open
subsets U ′

i , i ∈ J , such that f(S ∩hUi
) ⊂ S ′∩hU ′

i
, for every i (such coverings always

exist). Then we write

(15.1.1) α =
∑

i∈J

αi,

with αi in |Ω̃|+(S) such that αi = [1S∩hUi
]αi. The fact that we can write α in such

a way is quite clear. Furthermore it follows from the hypotheses that the restriction
αi|Ui

of αi to |Ω̃|+(S ∩ hUi
) is fUi

-integrable. Now we can set

(15.1.2) f top
! (α) :=

∑

i∈J

j+(f top
Ui!

(αi|Ui
)),

where j+ denotes the morphism |Ω̃|+(S ′ ∩ hU ′
i
) → |Ω̃|+(S ′) which is the zero mor-

phism if S ′∩hU ′
i
is of K-dimension < s′, and is given by extension by zero if S ′∩hU ′

i
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is of K-dimension s′. By additivity this definition is independent of all choices we
made.

Hence, if we denote by If |Ω̃|+(S) the set of f -integrable positive volume forms,
we defined a morphism

f top
! : If |Ω̃|+(S) −→ |Ω̃|+(S ′).

When S ′ = hSpec k, we shall say integrable for f -integrable and write
∫

S
α for f top

! (α).
In particular

∫
S
α lies in C+(hSpec k) and its definition is compatible with the begin-

ning of this section.
All the above constructions carry over literally to |Ω̃| replacing everywhere C+ by

C, except for the following point. In the decomposition (15.1.1), it does not follow
anymore from the hypotheses that the restrictions αi|Ui

of αi to |Ω̃|+(S ∩ hUi
) are

all fUi
-integrable. But there certainly exists decompositions (15.1.1) satisfying this

condition, so we can restrict to such decompositions.

15.2. Leray residue. — We start by recalling the standard Leray residue of
differential forms in our framework. Let us consider a morphism f : X → Y of
k((t))-algebraic varieties. Assume X is of dimension r, Y is of dimension s and that
for every point y in Y the fibers Xy of f at y is of dimension d = r − s. Take a
degree r differential form ωX on X and a non zero degree s differential form ωY on
Y . One may write

ωX = f ∗ωY ∧ γ,

with γ a meromorphic differential d-form on X . The d-form γ is not uniquely defined
but its restrictions γy to the fibers Xy depend only on ωX and ωY . More precisely,
denote by ∆ the subset of points y in Y such that Xy is contained in the polar
locus of γ. The Zariski closure of ∆ is of dimension < s. Note that γy is undefined
when on ∆ and that outside γy is a well defined relative meromorphic d-form on
Xy. We denote this relative d-form by ωX

ωY
. A typical example is the case when

X is the affine space Ar
k((t)) with coordinates x1, . . . , xr and Y is the affine space

As
k((t)) with coordinates y1, . . . , ys. Then f is given by s polynomials f1, . . . , fs. For

I = {i1, . . . , id} ⊂ {1, . . . r}, i1 < · · · < im, we denote by JacI the determinant of the
matrix ( ∂fi

∂xj
)1≤i≤s,j∈1,...,r\I . Then, if we set ωX = dx1∧ . . . dxr and ωY = dy1∧ . . . dys,

ωX

ωY
is equal, up to sign, to

dxi1
∧...dxid

JacI
at points where JacI 6= 0.

More generally, assume now h : S → S ′ is a morphism of definable subassignments
with S a definable subassignment of hW , W = X × X × Zr and S ′ a definable
subassignment of hW ′, W ′ = X ′ ×X ′ ×Zr′ . Assume S is of K-dimension s, S ′ if of
K-dimension s′ and that the fibers Sy of h are all of dimension d = s− s′, for every

point y in S ′. Take ωS in Ω̃s(S) and ω′
S a generator of the A(S ′)/A<(S ′)-module

Ω̃s′(S ′). Proceeding as before, one defines by the Leray residue construction an

element ωS

ωS′ y
in Ω̃s−s′(Sy), for every point y in S ′ outside a definable subassignment

of K-dimension < s′. Consider now α in |Ω̃|+(S) and |ω| a gauge form in |Ω̃|+(S ′).
If α is the class of (ω′, f) and |ω| is the class of (ω, 1), we define α

|ω|y
as the class
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of (ω′

ω
, f) in |Ω̃|+(Sy), for every point y in S ′ outside a definable subassignment of

K-dimension < s′. The same construction may be similarly done for |Ω̃| instead of
|Ω̃|+.

The following Proposition shows that considering f! is essentially the same as
taking a fiber integrals of Leray residue of canonical volume forms. More precisely:

15.2.1. Proposition. — Let f : S → S ′ be a morphism in Defk. Assume S is
of K-dimension s, S ′ if of K-dimension s′ and f is equidimensional of dimension
d = s − s′. A Function ϕ in Cs

+(S) or in Cs(S) is f -integrable if and only if

ϕ( |ω0|S
|ω0|S′

)y is integrable for every point y in S ′ outside a definable subassignment of

K-dimension < s′. Then, for every point y in S ′ outside a definable subassignment
of K-dimension < s′, we have

i∗y(f!(ϕ)) =

∫

Sy

ϕ|Sy

( |ω0|S
|ω0|S′

)

y
.

Proof. — It is enough to prove the statement for ϕ in Cs
+(S). Assume f = g ◦ h,

with g and h satisfying the hypotheses of the Proposition. Then, if the statement
holds for g and h, it also holds for f . Hence, using the embedding of S into the
graph of f , it is enough to prove the statement when f is an isomorphism or when
f : S ⊂ S ′[m,n, r] → S ′ is induced by the projection. In the first case the statement
follows from Theorem 12.1.1. For the second case on reduces similarly to proving
the result when m = 0, which is clear, and when (m,n, r) = (1, 0, 0). In this last
case, by using a cell decomposition adapted to ϕ, one reduces to the case where S
is a cell and ϕ = [1S]. One also may assume S is equal to its presentation. When S

is a 0-cell, the result follows then from A8. When S is a 1-cell, ( |ω0|S
|ω0|S′

)y is nothing

else than the restriction of the canonical volume form on h[0, 0, 1] and the result
follows.

Proposition 15.2.1 should be compared with the following one, which should give
a clear explanation of the difference between f! and µS′.

15.2.2. Proposition. — Let f : S → S ′ be a morphism in Defk. Assume S is
of K-dimension s, S ′ if of K-dimension s′ and that the fibers Sy of f are all of
dimension d = s− s′. Let ϕ be a Function in IS′Cd

+(S → S ′) or in IS′Cd(S → S ′).
Then, for every point y in S ′, we have

i∗y(µS′(ϕ)) =

∫

Sy

ϕ|Sy
|ω0|Sy

.

Proof. — It is enough to consider the positive case, which follows directly from
Proposition 14.2.2.

15.3. General Fubini Theorem for fiber integrals. — We can now state a
general form of Fubini Theorem for motivic integration.



80 RAF CLUCKERS & FRANÇOIS LOESER

15.3.1. Theorem (Fubini Theorem for fiber integrals)
Let f : S → S ′ be a morphism of definable subassignments with S a definable

subassignment of hW , W = X ×X × Zr and S ′ a definable subassignment of hW ′,
W ′ = X ′ ×X ′ × Zr′. Assume S is of K-dimension s, S ′ if of K-dimension s′ and
that the fibers Sy of f are of dimension d = s− s′ for every point y in S ′.

(1) Let α be in |Ω̃|+(S). Then α is integrable if and only if α is f -integrable and
f top

! (α) is integrable.

(2) Let α be in |Ω̃|(S). If α is integrable, then α is f -integrable and f top
! (α) is

integrable.
(3) Under the hypotheses of (1) or (2), assume α is integrable. Then

∫

S

α =

∫

S′

f top
! (α).

Proof. — We may reduce to the case where X , X, X ′, and X ′ are all affine spaces.
Let us consider the positive case. Note that if ϕ is a f -integrable Function in Cs

+(S),
It follows from the hypothesis made on the dimension of the fibers of f , that f!(ϕ)
lies in Cs′

+(S ′). So the result follows from A0, since p! = p′! ◦f!, where p and p′ denote
respectively the projections of S and S ′ onto hSpec k. The general case follows directly
from the postive case.

15.4. A reformulation of the change of variable formula. — Let f : S → S ′

be a morphism in GDefk. Assume S and S ′ are of K-dimension s.

15.4.1. Theorem. — Let f : S → S ′ be a morphism of definable subassignments
as above. Assume f is an isomorphism of definable subassignments. A volume form
α in |Ω̃(S ′)|+ or in |Ω̃(S ′)| is integrable if and only if f ∗(α) is integrable. When this
holds, then ∫

S

f ∗(α) =

∫

S′

α.

Proof. — We reduce to the affine case where S and S ′ are in Defk. By the very
definition of ordjacf we have

f ∗|ω0|S′ = Lordjacf |ω0|S,

and the result follows from the change of variable formula Theorem 12.1.1 and
13.2.2.

15.5. Relative setting. — Replacing differential forms by their relative versions
of 8.5, one defines relative volume forms. Using the results of § 14, everything we did
in this section may be generalized in a straightforward way to the relative setting.
We won’t give more details here.
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16. Comparison with the previous constructions of motivic integration

16.1. Remarks about changing theories. — Let T be a theory as in 2.7.
Let Z be a definable T -subassignment over k. We may consider the subcategory
RDefZ(LDP,P, T ) of GDefZ(LDP,P, T ), whose objects are definable T -subassignments
Y of Z × hAn

k
, for some n, the morphism Y → Z being induced by projection

on the Z factor. One defines then similarly as in 5.1 the Grothendieck semiring
and ring SK0(RDefZ(LDP,P, T )) and K0(RDefZ(LDP,P, T )), which we shall from
now on write SK0(RDefZ) and K0(RDefZ) to make short. One also defines the
semiring P+(Z, (LDP,P, T )) and the ring P(Z, (LDP,P, T )) similarly as in 4.9 and also
C+(Z, (LDP,P, T )), C(Z, (LDP,P, T )), C+(Z, (LDP,P, T )), C(Z, (LDP,P, T )), C+(Z →
S, (LDP,P, T )) and C(Z → S, (LDP,P, T )) as in 5.3 and § 6. Here again, to make
short we shall sometimes write P+(Z) for P+(Z, (LDP,P, T )), and so on. Everything
we did in sections 5 to 15 extends mutatis mutandis to this more general framework.

Furthermore all these constructions are functorial with respect to the theories in
the following sense.

Let i : T1 → T2 be an inclusion of theories and let Z be a definable T1-
subassignment over k. Since Fieldk(T2) is a subcategory of Fieldk(T1), by restriction
from Fieldk(T1) to Fieldk(T2) we get a definable T2-subassignment over k we shall
denote by i∗(Z). In this way we get natural functors i∗ : GDefk(LDP,P, T1) →
GDefk(LDP,P, T2) and i∗ : Defk(LDP,P, T1) → Defk(LDP,P, T2). Note also that i∗
induces a functor i∗ : DefZ(LDP,P, T1) → Defi∗Z(LDP,P, T2), hence a morphism
i∗ : SK0(RDefZ) → SK0(RDefi∗Z). Also, by restriction from Z to i∗Z, one gets
a morphism i∗ : P+(Z) → P+(i∗Z) sending P0

+(Z) on P0
+(i∗Z), hence we have a

natural morphism i∗ : C+(Z) → C+(i∗Z), and similarly for C(Z), C+(Z), C(Z),
C+(Z → S), C(Z → S), etc.

The following statement, which follows directly from our constructions, is a typ-
ical example of what we mean by being functorial. Similar statements hold in the
relative and global settings.

16.1.1. Proposition. — Let i : T1 → T2 be an inclusion of theories and let S be in
Defk(LDP,P, T1). Let f : X → Y be a morphism in Defk(LDP,P, T1). The morphism
i∗ : C(X) → C(i∗X) sends S-integrable Functions to i∗S-integrable Functions and

i∗ ◦ f! = (i∗(f)!) ◦ i∗.

16.2. Comparison with the original construction of motivic inte-
gration. — If one considers the theory Tacl of algebraically closed fields,
K0(RDefk(LDP,P, Tacl)) is nothing else but the ring K0(Vark) of [11], so we
get a canonical morphism

γ : SK0(RDefk) ⊗N[L−1] A+ −→ K0(Vark) ⊗Z[L] A.

Here A denote the ring A := Z[L,L−1, ( 1
1−L−i )i>0] and A+ is defined as in 4.2. Also,

if we denote by M̂ the completion of K0(Vark)[L
−1] considered in [11], expanding

the series 1 − L−i yields a canonical morphism δ : K0(Vark) ⊗Z[L] A→ M̂.
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Let X be an algebraic variety of dimension d over k. Set X 0 := X ⊗Spec k

Spec k((t)) and X := X 0 ⊗Spec k((t)) Spec k((t)). Consider a definable subassign-
ment W of hX in the language LDP,P(k) such that W (K) ⊂ X (K[[t]]) for every
field K containing k. Formulas defining W (in some affine open chart) define a
semi-algebraic subset of the arc space L(X) (in the corresponding chart, with the
notations of [11]); in this way one may assign canonically to W a semi-algebraic
subset W̃ of L(X). Similarly, every Z-valued function α on W which isdefinable in

the language LDP,P(k) gives rise to a semi-algebraic function α̃ on W̃ .

16.2.1. Theorem. — Under the previous assumptions, if |ω0| denotes the canon-
ical volume form on hX defined in 8.6, for any bounded below Z-valued definable
function α on W , 1WL−α|ω0| is integrable on hX and we have

(δ ◦ γ)
(∫

hX

1WL−α|ω0|
)

=

∫

W̃

L−α̃dµ′,

with µ′ denoting the motivic measure defined in [11].

16.2.2. Remark. — The above result shows that for semi-algebraic sets and func-
tions the motivic volume of [11] already exists at the level of K0(Vark)⊗Z[L]A, that
is, before any completion process.

Proof. — The statement concerning integrability follows directly from Proposition
12.2.2. Similarly as what is performed in the proof of Theorem 5.1′ in [11], we
may reduce to the case X is affine and, using resolution of singularities and the
change of variable formula Theorem 15.4.1, we may assume that all the functions fi

and h occuring in the semi-algebraic description [11] (2.1) (i)-(iii) of W̃ and α̃ are
monomials. The integrals we have to compare are then product of similar integrals
in one variables which are equal by direct computation.

16.3. Comparison with arithmetic integration. — Now consider the theory
PFF of pseudo-finite fields. Then K0(RDefk(LDP,P,PFF)) is nothing else but the
ring denoted by K0(PFFk) in [13] and [14]. In [12], arithmetic integration was

defined as taking in the completion K̂v
0 (Motk,Q̄)Q of a ring Kv

0 (Motk,Q̄)Q. It was
somewhat later remarked in [13] and [14] that one can consider a smaller ring
denoted by Kmot

0 (Vark) ⊗ Q, whose definition we shall now recall. For k a field
of characteristic zero, there exists by Gillet and Soulé [18], Guillen and Navarro-
Aznar [19], a unique ring morphism K0(Vark) → K0(CHMotk), which assigns to the
class of a smooth projective variety X over k the class of its Chow motive, where
K0(CHMotk) denotes the Grothendieck ring of the category of Chow motives over
k (with rational coefficients). By definition Kmot

0 (Vark) is the image of K0(Vark) in
K0(CHMotk) under this morphism. [Note that the definition of Kmot

0 (Vark) given
in [13] is not clearly equivalent and should be replaced by the one given above.] In
[13] and [14], building on the work in [12], a canonical morphism

χc : K0(PFFk) −→ Kmot
0 (Vark) ⊗ Q
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was constructed. Recently, J. Nicaise has extended that construction to the relative
setting [23].

The arithmetic motivic measure takes values in a certain completion K̂mot
0 (Vark)⊗

Q of the localization of Kmot
0 (Vark) ⊗Q with respect to the class of (the image of)

the affine line. We have natural morphisms γ̃ : SK0(RDefk) ⊗ N[L− 1]A+ →
K0(PFFk) ⊗Z[L] A. The morphism χc induces, after taking series expansions of

(1 − L−i)−1, a canonical morphism δ̃ : K0(PFFk) ⊗Z[L] A→ K̂mot
0 (Vark) ⊗ Q.

Let X be an algebraic variety of dimension d over k. Set X 0 := X ⊗Spec k

Spec k((t)) and X := X 0 ⊗Spec k((t)) Spec k((t)). Consider a definable subassign-
ment W of hX in the language LDP,P(k) such that W (K) ⊂ X (K[[t]]) for every field
K containing k. Clearly the formulas defining W (in some affine open) define a

definable subassignment W̃ of hL(X), with the notations of [12].

16.3.1. Theorem. — Under the previous assumptions, if |ω0| denotes the canon-
ical volume form on hX defined in 8.6, 1W |ω0| is integrable on hX and we have

(δ̃ ◦ γ̃)
(∫

hX

1W |ω0|
)

= ν(W̃ )

with ν denoting the arithmetic motivic measure defined in [12].

Proof. — Similar to the proof of Theorem 16.2.1.
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